Technology Long Poles Introduction

- 1. Workshop overview and procedures used:
 - 50+ attendees and five panelists participated
 - Formal presentations initiated the discussions
 - Audience introduced themselves noting interests
- 2. Process to ID Technology Longpoles was to:
 - Brainstorm to capture everyone's ideas (no filter)
 - Categorize technologies into a few major topics
 - Prioritize entire list (25) into top five and top 9
- 3. Consensus voting was used to rank all items
 - Everyone voted for their top five to rank top 9
 - Everyone voted for their top two to rank top five
 - Winner was the Situational Awareness category

Technology Long Poles (Continued)

- 1. Additional Workshop Procedures Used:
 - A running summary of notes was written
 - Technology candidates were all debated
 - All wording was reviewed and corrected
- 2. Policy issues removed as non-Long Pole
- 3. Thoughtful insights shared on paradigms
 - Technologies not enough in/of themselves
 - Changes in US concepts are also required
 - Unmanned from start + unmanned logistics
- 4. 25 Long Poles in five categories prioritized:

1. C4

- Human-machine interface focused on planned events (EBP)
- Control of the army of robots in a multi-robot environment
- Ability to do close-in operation robustly and remotely
- Secure and reliable communications is a vulnerability
- Mixed (Sliding) autonomy (build trust)
- Decentralized parsing of tasks
- Effective control of an autonomous weapon/failsafe (FMEC)

2.

SSA

ACT

- Perception methodologies for sensor strategies amongst teams of robots
- Robot to explore to determine intent (engage it actively)
- Presenting current state to operator and to robot
- Human visibility (operator's intent)
- Threat inference prediction
- Robot Self-awareness
- 3.
- Planning for heterogeneous systems (planning for dissimilar systems)
- Taxonomy of achievements
- Safety for industrial interactions aimed at robot-human interactions and for manned unmanned systems
- 4. SYSTEMS ENGINEERING
 - Power Generation &/or storage
 - Families of cascading unmanned systems as a solution
 - Modular design is not routine
 - Minimum set of components to deliver functional capability
 - Standards across the industry driven by scale
 - Design for robotics assembly could be an enabler
 - Creating simplicity (improved decision accuracy by inferences)
- 5. LOGISTICS
 - Power management (air refuel-able as an example)
 - Reliability and availability (designed in) especially for weaponized process

- 1. C4
 - Human-machine interface focused on planned events (EBP)
 - Control of the army of robots in a multi-robot environment
 - Ability to do close-in operation robustly and remotely
 - Secure and reliable communications is a vulnerability
 - Mixed (Sliding) autonomy (build trust)
 - Decentralized parsing of tasks
 - Effective control of an autonomous weapon/failsafe (FMEC)

- 1. SSA
 - Perception methodologies for sensor strategies amongst teams of robots
 - Robot to explore to determine intent (engage it actively)
 - Presenting current state to operator and to robot
 - Human visibility (operator's intent)
 - Threat inference prediction
 - Robot Self-awareness

- 1. ACT
 - Planning for heterogeneous systems (planning for dissimilar systems)
 - Taxonomy of achievements
 - Safety for industrial interactions aimed at robot-human interactions and for manned unmanned systems
- 2. LOGISTICS
 - Power management (air refuel-able as an example)
 - Reliability and availability (designed in) especially for weaponized process

- 1. SYSTEMS ENGINEERING
 - Power Generation &/or storage
 - Families of cascading unmanned systems as a solution
 - Modular design is not routine
 - Minimum set of components to deliver functional capability
 - Standards across the industry driven by scale
 - Design for robotics assembly could be an enabler
 - Creating simplicity (improved decision accuracy by inferences)

Technology Long Poles Results

- 1. Summary of Long Pole workshop results:
 - Excellent participation by all attendees
 - Thought-provoking panelists briefings
 - We did not lack for opinions nor ideas
 - 25 Technology Long Poles were listed
 - All fit in Five representative categories
 - Top 9 Long Poles prioritized by voting
 - Top 5 Long Poles selected by consensus
 - Thank you to panelists and all attendees
 - Special thanks to Phillip Koon for note taking
- 2. Top 5 should keep us busy for 10 years