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Outline

Problems with HC Cr electroplating process.
Alternative pollution-free coatings against high 
temperature wear and erosion. 
Plasma enhanced magnetron surface cleaning.
Plasma enhanced magnetron deposition.
Analytic characterization and adhesion testing.
Conclusion
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Problems with Electroplated Cr

Environment Problem: Aqueous toxic Cr VI from Cr Electroplating Process

Performance Problem:  Inadequate substrate protection, 
reduced service life for high temp wear & erosion applications
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Plasma Enhanced Magnetron Sputtering

Filament Plasma + Magnetron Plasma         Current Density ~  4.9 mA/cm2

Magnetron Plasma without Filament Plasma         Current Density ~ 0.2 mA/cm2

Plasma Enhanced Magnetron Sputtering 
with Filament and Biasing at SwRI 
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Conventional Physical Vapor Deposition   
via DC Magnetron Sputtering
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Planned Plasma Enhanced 
Cylindrical Magnetron Deposition
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LEFT- RF-plasma enhanced cylindrical magnetron sputtering experiments at SWRI.
MIDDLE- HIPIMS (high power impulse magnetron sputtering) from- Dr. J. Bohlmark, Dr. J. Alami.
RIGHT- ARDEC-Benet Labs CMS platforms for coating full-length 120mm large cal bore.
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Potential Applications of Technology
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Properties Steel Cr α-Ta
Melting Point Temperature [°C] 1535 1857 2996

Lattice Parameter* [Angstroms] 2.8665 2.8847 3.298
Lattice Mismatch with alpha Fe  -0.6% -15.1%
Lattice Mismatch with alpha Ta 13.1% 12.5%  

Thermal expansion at RT (K-1)** 1.35E-05 6.50E-06 6.50E-06
Difference in thermal expansion with Fe  51.9% 51.9%

thermal conductivity, k  [W/mK]*** 45.1 98.5 57.7
Young's Modulus, E (GPa)**** 207 248 173

Properties of Ta, Cr, A723 Gun Steel

*Cullity
**Smithell's 6th Ed.
***Underwood; Incorpera & DeWitt, Introduction to Heat Transfer
****Thornton & Colangelo, Fundamentals of Engineering Materials
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Properties of bcc and tetragonal Ta

“softer” bcc Ta on Steel “harder” tetragonal Ta on steel

Random α Ta (110) (left ring) 
Random β Ta (002) (right ring)

Random α Ta (110) (left ring)

Textured β Ta (002) (right ring)

2-Theta

Chi

 α-Ta β-Ta 
Structure BCC Tetragonal 
Lattice 
Parameters 

a=b=c= 
0.33058 nm 

a=b=1.0194 nm 
c=0.5313 nm 

Hardness 100-200 KHN 1000-1200 KHN 
Resistivity 15-60 μΩ-cm 200 μΩ-cm 
Thermal 
Stability Tm = 2996oC Tβ⇒α ~ 750oC 

Ductility Ductile Brittle 
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Sputter Cleaning of Gun Steel

Native oxide on gun steel surface is ~10-20 nm 

Heat-Generated (350ºC for 3 hrs in air) oxide is 
~300-350 nm.  

AES showed ion sputter cleaning  for 60 min 
removed all native and heat-induced oxides. 

Surface Oxide of Gun Steel
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Sputtered Cr on A723 Gun Steel

Higher discharge current increases hardness, density, improves microstructure

0A, 14 µm, 85 min, HK10 399

20A, 6 µm, 90 min, HK10214410A, 13 µm, 85 min HK101226

5A, 13 µm, 85 min, HK10633
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Sputtered Ta on A723 Gun Steel

Higher discharge current increases hardness, density, residual stresses, α-Ta formation

Ta 13-15Ta 5Ta 4

Ta 4 Ta 5 Ta 13-15

10A, 148µm, 900 min, 
HK10 337, α-Ta

10A, 90µm, 600 
min HK10602, α-Ta

0A, 10µm, 60 min
HK10 552, (α+β)-Ta
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Plasma Enhanced DC 
Magnetron Coating 

Microstructure

Land-Groove, 450 micron Ta  
Walls- 250 micron Ta 

HIPIMS (High Intensity Impulse 
Magnetron Sputtering)  

(Helmersson/Rhode/Lee)

Uniform 2 micron bcc Ta on 
slanted edge of gun steel sample

Sputtered Ta on Rifled 155mm

Plasma Enhanced DC 
Magnetron Coating 

Topography

Land-Groove, 450 micron Ta  
Walls- 250 micron Ta 
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Coatings Adhesion Testing
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Microscratch Test of Thin Coatings
Groove Test (ASTM B571-91)
Pulsed Laser Heat Test 
Vented Erosion Simulator Test
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(b) Sample Insert

(a) Vented Erosion Simulator 

VES (Vented Erosion Simulator) 
Test of  Thermal-Mechanical-

Chemical Properties of Coatings
PLH (Pulsed Laser Heating)  Test of  

Thermal Properties of Coatings    

Groove Test for Coatings Adhesion Strength
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Groove Adhesion Testing
(ASTM B571-91)

Cr16 Cr24

Ta12-2Ta3 Ta13-15

Electroplated Cr

Cohesive failures

Cr 15

155mm Land 155mm Groove
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Internal Ballistic and Transient Thermal Simulation
120mm Cannon Firing and Pulsed Laser Heating
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Comparative Pulsed Laser 
Heating Tests

Ta
HAZ
Steel

Cr

Steel HAZ

90 μm Sputtered bcc Ta in Ar on  Steel (Ta4)

Ta
HAZ
Steel

PLH parameters (2.5 msec, 1.0 J/mm2, 20 cycles, simulating ~1480°C temperature)

125 μm Electroplated Cr on Steel (Cr-1966-01)

HAZ (Heat affected zone) in steel is due to tempered to untempered martensite transformation.  
During heating-cooling cycle, martensite transforms to austenite, then back to martensite

80 μm Sputtered bcc Ta in Kr on  Steel (Ta 12-2)
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148μm Ta on Gun Steel after
25 VES Firing High Erosive RDS

Axial (1.0 inch from end of 1.6 inch long sample)

Axial hardness Axial oxide layer

As deposited

After 25 rounds

As-deposited topography - microstructure

Minimal softening, good adhesion, no cracking after 25 VES rds!

After fired surface
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Transverse Ta Thickness = 203 µms

286μm Ta on Steel After 
129 VES Firing High Erosive RDS

Longitudinal Ta Thickness = 204 µm

Minimal softening, good adhesion, 
no cracking after 129 VES rds!
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Electroplated HC Cr (120µm) on Steel
~ 100 cycles of VES under same conditions

Plasma Enhanced bcc Ta (286µm) on steel after 129 cycles VES high erosive rds
Showing excellent structure,  adhesion, and crack-resistance properties

VES Firing Comparison: Electroplated Cr 
vs. Plasma Enhanced Sputtered Ta

Electroplated HC Cr (120µm) on Steel
~100 cycles of actual firing of high erosive rds
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Conclusions

1)   Plasma enhanced magnetron technology using higher ion 
bombardment can deposit hard, dense, adhesive, 
pollution-free coatings on steel with improved 
microstructure.

2)   Plasma enhanced sputtered Ta on 120mm and  155mm 
test samples demonstrated excellent structure, ductility, 
adhesion, and resistance against thermal shock cracking 
and high temperature erosion.

3)   Plasma enhanced sputtered Ta has potential to coat 
120mm and 155mm barrels and other armament 
components, with expected improved cycle life due to the 
high melting point temperature and absence of cracks.
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