Enhanced Ammunition Performance with ECL[®] Technology

NDIA Conference Gun and Missile Systems April 21 - 24, 2008

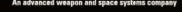
Authored by: **Bishara Elmasri, ARDEC Howard Shimm, ARDEC** Kelly Moran, ATK **Beat Vogelsanger, Nitrochemie**

© NITROCHEMIE 2008

Advanced Propellants

DESIGN, MODELING AND PRODUCTION OF ADVANCED SOLUTIONS

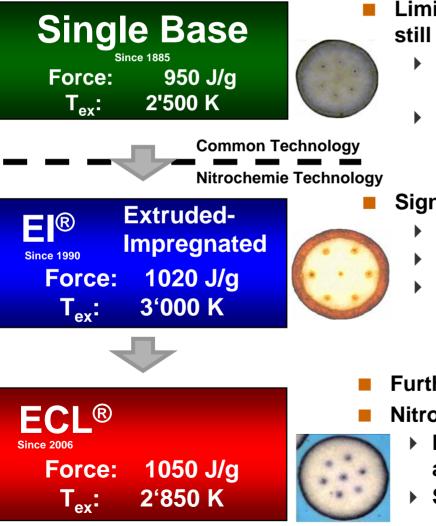
ATK and Nitrochemie Strategic Alliance


- Propellants for Ammunition (5.56mm to 155mm)
- Specialty Propellants
- Single, Double, and Triple-based Propellants
- IM Propulsion
- Advanced Coatings and Energy Management

An advanced weapon and space systems company

Contents

Introduction – Why Choose ECL Propellant?

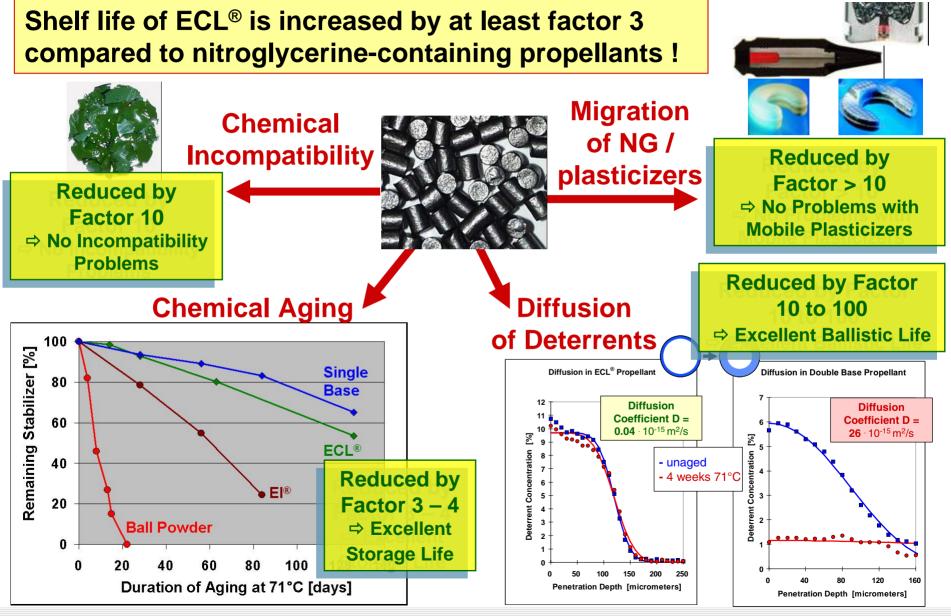

Results

- > 30 mm APFSDS-T Mk258
- LW 30 mm M788 TP

Conclusions

Evolution of Small / Medium Caliber and Mortar Propellants

- Limited performance potential; still suitable for:
 - Many small caliber applications (7.62mm, 12.7mm)
 - conventional medium calibre applications
- Significantly improved performance !High performance small caliber (5.56mm)
 - Medium caliber with KE projectiles
 - Mortar charges (solves migration problem, better precision)
- Further improved performance !
- Nitroglycerine-free
 - Highest performance medium caliber applications (e.g. KE and airburst projectiles)
 - Special mortar applications


 V_0, p_{max}

What are the Advantages of ECL[®]?

Advantages of ECL[®] propellants, in comparison to nitroglycerine-containing propellants, are:

- Equal or higher ballistic performance due to:
 - very high thermal efficiency (up to 10% higher)
 - very flat, tunable temperature characteristics
 - reduced and uniform ignition delay
- Lower erosivity due to lower flame temperature
- IM-improved; increased cook-off resistance
- NG-free / non-toxic "green" formulation
- No problems with nitroglycerine migration
- At least 3 times longer service life in A1 climatic zones due to:
 - much better chemical stability
 - much better ballistic stability
 - much better compatibility

Current US Medium Caliber Applications Investigating Use of ECL® Technology

30 mm APFSDS-T Mk 258

30mm ABM

30mm Ballistic Match (PGU 13/14)

50mm EAPS

M789 LW 30mm HEDP

US DoD Non-NG Propellant Contract 30 mm APFSDS-T Mk 258

30 mm Medium Cal Program

System: 30 mm APFSDS-T Mk 258

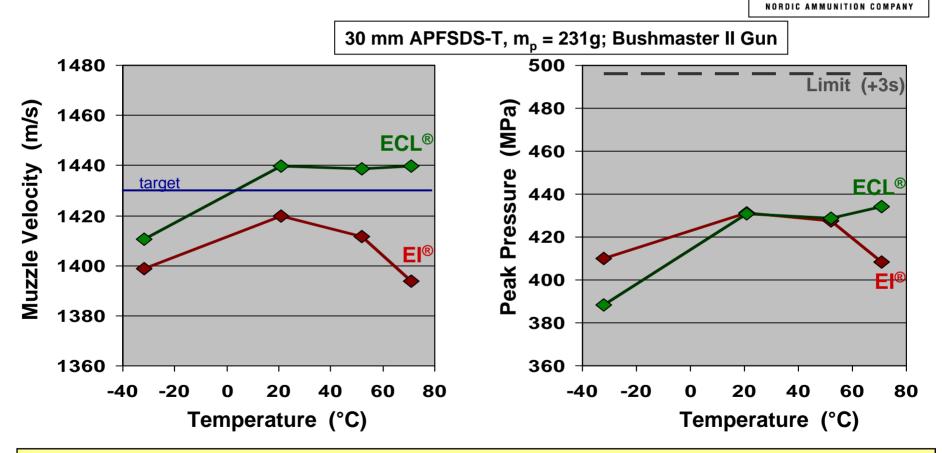
Contract:

DAAB07-03-D-B011 (from 2006)

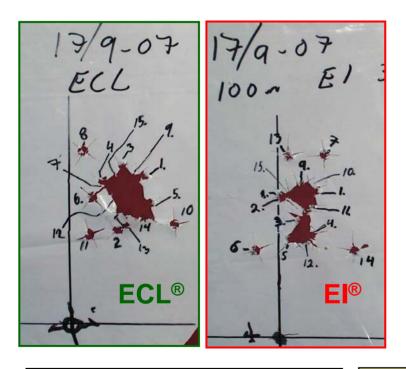
Goals of Feasibility Study:

- ⇒ NG-free Propellant
- ⇒ IM Improvement

- ✓ (ECL is NG-free)
- ☑ (slightly milder reaction; much longer time to cook-off)


The ECL[®] propellant has been demonstrated for use in the Mk258 with good results but has NOT been qualified by the Army or DoD for use in the Mk258

Tests performed by:


US DoD Non-NG Propellant Contract 30 mm APFSDS-T Mk 258 – Ballistic Performance

⇒ ECL[®] achieves 20 m/s higher muzzle velocity than El[®] at same pressure level
⇒ Flat temperature coefficient, especially at warm / all requirements are fulfilled

US DoD Non-NG Propellant Contract 30 mm APFSDS-T Mk 258 – Dispersion and Penetration

US Spec. IAW WS 33595

Dispersion of ECL[®] and baseline El[®] propellants are comparable and well within limits

- ⇒ Baseline El[®] propellant: Projectile penetrates target at 100% and 120%, but <u>not</u> at 140% of specification
 ⇒ ECL[®]: Projectile penetrates target at 100%, 120%,
 - and 140% of specification \rightarrow 20% more distance !

2008 HFC Symp _ ECL Propellant _ Pres Vogelsanger.ppt Vob/Su/Sr © NITROCHEMIE 2008

destroyed

Medium Caliber Propellants for US Programs / Ammunitions

Improved LW30 Propulsion System

Actual M789 LW30mm HEDP (Light Weight / High Explosive Dual Purpose) cartridges for APACHE helicopter have caused serious problems: (Source: J. Hirlinger; ARDEC; 42nd Armament Conference; Charlotte, NC; 2007)

Inbore detonation: Premature initiation in the barrel; barrel

Hangfire signature duplicated with WC855 Ball[®]

in excess of 480 MPa when shot at ambient.

damage the operating system and receiver.

Damage created in testing similar to that seen in

HE-Inbore events, except no barrel bulge and

Powder that had been subjected to 71°C for 33 days

WC855 Ball[®] Powder exhibits chemical and ballistic

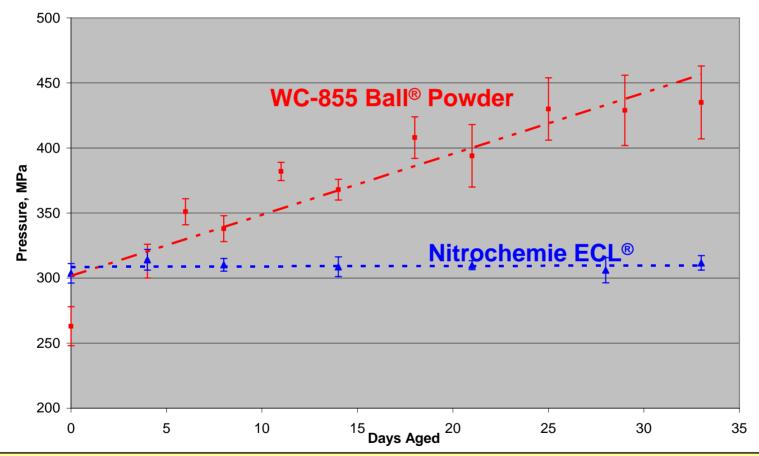
Propellant gases vented from the chamber area can

degradation after hot temperature storage – Pressures

Hangfire: Interior ballistics delayed; weapon systems destroyed

generally no Blast Suppressor damage.

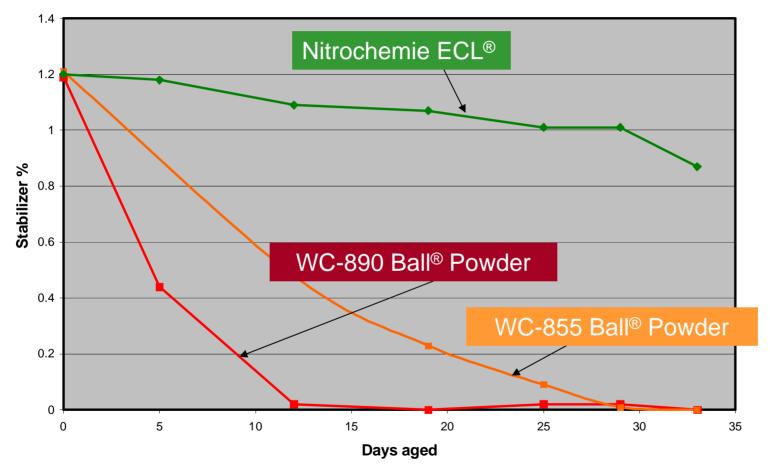
ECL® propellant is excellently suited to solve these problems. ECL ® propellant combines high interior ballistic performance with excellent chemical and ballistic stability



10

ECL[®] for LW30mm – Consistent Ballistics After Hot Storage

M788 Ball Powder and Nitrochemie ECL Propellant Aged at 71°C for 33 Days Test Vehicle LW30 M788


⇒ Increase of peak pressure by 50% (or 150 MPa) with WC855 Ball[®] Powder

⇒ No change of peak pressure with ECL[®] propellant after 33 days at 71°C

ECL® for LW30mm – Exhibits Superior Chemical Stability

Stabilizer Depletion Vs. Time After Aging at 71°C

⇒ 100% of primary stabilizer, DPA, depleted in Ball[®] samples after 33 days at 71°C
⇒ ECL[®] shows only 25% depletion of Akardite-2 after 33 days at 71°C

Summary and Conclusions

ECL[®] propellant are state-of-the-art formulations with superior performance characteristics:

- Improved ballistic performance high thermal efficiency
- Flat, tunable temperature characteristics
- No carcinogenic ingredients
- Improved IM properties

ECL[®] propellants demonstrate superior chemical and ballistic stability when compared to single base, double base and El propellant formulations.

SERVICE LIFE OF AMMO EXTENDED BY FACTOR OF 3

IMPROVED SAFETY FOR THE WARFIGHTER

Acknowledgements

Co-workers at ARDEC, Picatinny Arsenal

Bishara Elmasri, Howard Shimm and John Hirlinger

Co-workers at Nitrochemie Wimmis AG


Ulrich Schädeli, Dominik Antenen, Kurt Ryf and Heinz Jaskolka

Co-workers at ATK Radford Plant

Steve Ritchie, Jim Wedwick, Randy O'Brien and Amy Morris

Audience: For your Attention

