

# Safety Process For Navy Gun and Ammunition Systems

#### • Eileen McConkie

eileen.mcconkie@navy.mil

- Naval Surface Warfare Center Dahlgren Division
- Dennis Bushor
  - Naval Surface Warfare Center Dahlgren Division
- John Filo
  - Naval Surface Warfare Center Dahlgren Division





- Purpose
- Policies
- Define Safety
- Gun System Safety Process
  - Hardware
  - Software
- Ammunition Safety
- Hazards
  - Identification
  - Mitigation
  - Risk Acceptance
- Independent Review
- Summary



- Identify safety processes involved in the qualification of all gun systems and their associated ammunition for U.S. Navy
  - Gun System
    - Gun Mount (GM)
    - Fire Control System (FCS)
    - Associated Systems
  - Ammunition Safety
    - Fuze
    - Energetic
    - Transportation and Storage

System Safety Program Plan Developed for all Gun and Ammunition Systems



Safety Process

- All Gun Systems and Ammunition Need to go Through a Rigorous Safety Process Before Deployment
  - Gun Systems for Navy Platforms
    - New Development
    - Previously Developed Systems
  - New Ammunition for New or Existing Gun Systems
  - Updates/Upgrades to Deployed Systems
  - Deployment of Existing Gun Systems on New Platforms



### Government and Navy Safety Policy



Implementation of Government Safety Policies Ensures Safety of System Onboard Ship



- What exactly IS a System Safety Issue?
  - –A situation in which own-platform, ownplatform personnel, or friendly assets are at risk from onboard equipment / systems.
    - Personnel
    - •Own-Ship Damage
    - Friendly Asset
    - •Environment
- What exactly IS NOT a System Safety Issue?
  - -Operational Effectiveness and Survivability Issues
    - Operational Effectiveness
    - Survivability



### Gun System Safety Analysis Process





Gun System Hardware Safety

- Apply General Guidelines for Electronic Equipment (*MIL-HDBK-454*).
- Inspect hardware for validation of hardware safety requirements (regardless of design phase).
- Analyze equipment motion
- Identify sources of radiated energy



#### System Control Software Safety

Main emphasis of gun system safety.

- Analyze Software IAW NATO Standardization Agreement (STANAG) 4404.
- Apply lessons learned from previous like systems.
- Adhere to C++ safety coding guidelines
- Address Safety Concerns with
  - Java
  - Operating System
  - Middleware
  - Firmware
  - Development tools
- Analyze test environment
- Determine the Level of Rigor of Software testing



**Ammunition Safety** 

- Design to Proven Standards
  - Fuze design MIL-STD-1316
  - Electronic Safe & Arm Device (ESAD) WSESRB TM
  - Ignition Design *MIL-STD-1901*
  - Initiator MIL-DTL-23659
- Ensure that the Energetic Compounds are Stable
  - NAVSEAINST 8020.5 and STANAG 4170
- Analyze Design to Mitigate Hazards
  - Eliminate Single Point Failures
  - MIL-STD-882D Safety Analyses
  - Special Safety Analyses
  - Structural Analyses



#### Ammunition Tests

- Analyze for a variety of environments
  - Transportation (Land, Sea, Air)
  - Storage
  - Handling by service personnel
  - Drop
  - Combat or Terrorist Threats
  - Fire
  - Shock and Vibration
  - Radiation
- Test
  - ESD / HERO: MIL-STD-464
  - Insensitive Munitions: MIL-STD-2105
    - Associated STANAG
  - Shipboard Shock: MIL-S-901
  - Fuze: MIL-STD-331C
  - Hot Gun Cook-off: NAVSEA SW300-BC-SAF-010





#### Identify and Categorize Mishaps and Causal Factors



#### **CAUSAL FACTORS**

Elements within the system design, implementation, or operation that lead to, or contain, a hazard.



## Hazard Mitigation

- Mitigation Methods (In order of precedence)
  - Design out hazard
  - Incorporate safety devices
  - Provide warning devices
  - Develop procedures and training



## Mishap Risk Acceptance Matrix

DAHLGREN

| FREQUENCY OF<br>OCCURRENCE | MISHAP SEVERITY CATEGORIES                                                    |               |               |                 |
|----------------------------|-------------------------------------------------------------------------------|---------------|---------------|-----------------|
|                            | 1<br>CATASTROPHIC                                                             | 2<br>CRITICAL | 3<br>MARGINAL | 4<br>NEGLIGIBLE |
| A – FREQUENT               | 1                                                                             | 3             | 7             | 13              |
| B – PROBABLE               | 2                                                                             | 5             | 9             | 16              |
| C – OCCASIONAL             | 4                                                                             | 6             | 11            | 18              |
| D – REMOTE                 | 8                                                                             | 10            | 14            | 19              |
| E – IMPROBABLE             | 12                                                                            | 15            | 17            | 20              |
| Cells:                     | Risk Level & Acceptance Authority:                                            |               |               |                 |
| 1-5:                       | HIGH (UNACCEPTABLE) – Acceptance of risk by Component Acquisition Executive.  |               |               |                 |
| 6-9:                       | SERIOUS (UNDESIREABLE) – Acceptance of risk by the Program Executive Officer. |               |               |                 |
| 10-17:                     | MEDIUM (Acceptable with review) – Acceptance of risk by the Program Manager.  |               |               |                 |
| 18-20:                     | LOW (Acceptable with review) – Acceptance of risk by the Program Manager.     |               |               |                 |



#### Navy Safety Review Boards

- Weapon System Explosives Safety Review Board (WSESRB)
  - SECNAVINST 5000.2C
    - Establishes the WSESRB as the Navy's independent agent for reviewing weapon system safety programs
  - OPNAVINST8020.14/MCO P8020.11
    - Specifies requirements for WSESRB review
  - NAVSEAINST 8020.6E
    - Establishes WSESRB policies and procedures
  - Software System Safety Technical Review Panel (SSSTRP)
    - Established by WSESRB to review software safety
    - More thorough review by technical experts
  - Fuze & Initiation Safety Technical Review Panel (FISTRP)
    - Established by WSESRB to review fuze/initiation systems safety
    - More thorough review by technical experts
  - Lithium Battery Review Board
- Insensitive Munition Review Board (IMRB)
- Ordnance Hazard Evaluation Board (OHEB)
- Bureau of Medicine (BUMED)
  - Laser Safety Review Board (LSRB)



Safety Process Summary

- Apply Mandated Policies
- Follow System Safety Program Plan
- Identify, Mitigate and Accept risk
- Present Safety Process to Safety Review Board
- Present Analysis to Safety Review Board

All Gun Systems and Ammunition Need to go Through a Rigorous Safety Process Before Deployment.



#### **BACK UP**



## Web Site for Further Interest

- Digital Engineering Institute
  - www.klabs.org/DEI/References/Military\_Speci fications.htm
- System Safety Handbook
  - www.asy.faa.gov/risk/SSHandbook/Contents. htm
- Joint Weapon Safety Review Process for USSOCOM Program

- www.acq.osd.mil/atptf



## Ammunition Qualification Tests

#### Ρνδτ **Sequential Environment**

28-Day Temperature and Humidity (T&H) **Transportation Vibration** Shipboard Vibration 4-Dav T&H Fast Cook-Off Slow Cook-Off **Bullet Impact Fragment Impact** Sympathetic Detonation Shaped Charge Jet Impact Salt Fog Sand and Dust Arena 5-Foot Drop **40-Foot Drop Shipboard Shock** Waterproof **Energetics Qualification** 

**Function and Casualty Fuze Function Fuze Arming Distance** Jumble Jolt **Missing Interrupter Thermal Shock Detonator Safety** Lead Azide HERO ESD FMV Lightning **Progressive Arming Primary Explosive Component Safety Test Bonfire Test** Stack Test POP Unit Load



Joint Systems

- JOINT WEAPON SYSTEMS HAVE JOINT REVIEWS
- Office of the Secretary of Defense (OSD)
  - Joint Weapon, Munitions, and Laser SOCOM Weapon Safety Review Process
    - USD AT&L Memo implementing the Joint USSOCOM Process, 9 November 07
    - MEMORANDUM OF AGREEMENT AMONG United States Special Operations, Command (USSOCOM), OSD AT&L, OSD Environmental Readiness and Safety, Department of the Army, Department of the Navy, Department of the Air Force
    - In support of USSOCOM Acquisitions
      - Collaborative process supported by each Service's CAE and Safety review authorities
      - Convenes as necessary to review Joint USSOCOM Weapon Programs
    - Incorporates the Joint Laser Safety Review Board (JLSRB)
- Participants
  - Navy WSESRB
  - USAF NON-NUCLEAR MUNITIONS SAFETY BOARD (NNMSB)
  - US ARMY FUZE SAFETY REVIEW BOARD (AFSRB)
    - MEMBERS OF EACH BOARD HAVE PARTICIPATED IN MEETINGS OF THE OTHER BOARD



# System Acquisition & System Safety







MIL-HDBK-454

- Electromagnetic environment effects
- Shipboard bonding and grounding
- Laser safety requirements
- Human engineering
- Hazardous Materials
- Radiation protections and signs
- Radio frequency protections and signs
- Safety colors
- Other safety signs, labels, and barriers
- Safety tags