

2008 NDIA 42nd Annual Armament Systems: Gun & Missile Systems Conference & Exhibition 21 – 24 April 2008 New Orleans, LA

LW30mm (30 x 113mm) Spotter Charge Prototype

Contact info:

Jim Roth Design Engineer Medium Caliber Ammunition ATK Medium Caliber Systems Phone: 763-712-7722 Email: jim.roth@atk.com Curtis Fielding ATK Launch Systems PEP, Research and Development Phone: 435-863-6188 Email: curtis.fielding@atk.com Dan Nielson ATK Launch Systems Ordnance&Energetics Phone: 435-863-6687 Email: dan.nielson@atk.com Fred Stecher ATK – Advanced Weapons Warheads Phone: 763- 744-5117 Email: fred.stecher@atk.com

- Background and Need
- Technical Approach
- ATK Testing
- Testing at Ft. Rucker
- Acknowledgements/Contacts
- Questions & Answers

LW30 Ammunition – 30mm X 113mm

An advanced weapon and space systems company

#4690

M789 HEDP

- High Explosive Dual Purpose

Length (max):	113 mm
Weight:	343 g
Projectile Mass:	234 g
Muzzle Velocity:	805 m/s
Max Range:	~ 3000 m
Dispersion:	1.35 mils

M788 TP

- Training Projectile matched to M789

M230 Weapon System

- 30mm M230 Chain Gun Automatic Cannon
- Caliber: 30mm X 113mm LW30 Linkless
- Max Range: ~ 4000 meters
- Rate of Fire: 625 ± 25 Shots per Minute
- Platforms:
 - AH-64 / AH64A Apache Attack Helicopters
 - MH-60 Variants SOAR
- Targets:
 - Light Armored Vehicles
 - Deployed Infantry

LW30mm Spotter Need and Requirements

5

LW30mm Spotter Charge IRD – Schedule Challenge

LW30 Spotter Charge – ATK Team

An advanced weapon and space systems company

Spotter Charge – Design Challenges

An advanced weapon and space systems company

M788 TP Projectile Velocity vs. Range

Material Selection – Approach

• Technical:

- Approach driven by the desired capability requirements
- Key challenges: Spotter material sensitivity against soft ground target and reaction against plywood

• Schedule

- "Off the shelf" material currently in use at ATK-LS
- Castable material due to time constraints of load tooling and integration with projectile geometry changes

Selection

- Identified 3 initial material candidates to be evaluated in ballistic capability testing
- Down selected to most viable materials for highest probability of success on target media

ID	Description
X-9	Magnesium powder
	 Strontium Nitrate (Red marker)
	ATK-LS proprietary binder
X-5	• ATK-LS proprietary Flare formulation
	Potassium perchlorate
X-8	Magnesium powder
	 Sodium Nitrate (White marker)
	 ATK-LS proprietary binder

An advanced weapon and space systems company

To address the aggressive schedule for demonstration, <u>*existing M788* or *M789 projectile*</u> <u>*hardware will be used or altered to accommodate spotter material* <u>*cast loading.*</u></u>

Spotter Material in Projectile Body & Nose Assembly

APPROVED FOR PUBLIC RELEASE - OSR# 08-S-1194

PRODAS Modeling for Ballistic Match to M788/M789

An advanced weapon and space systems company

Projectile Assy (grams) -Measured - All Samples Config 1 and Config 2 LW30 Spotter Charge Demonstration Projectile Build

Ballistic Match – PRODAS Trajectory Plots for 1500m

An advanced weapon and space systems company

ANSYS Stress Analysis for Ogive

An advanced weapon and space systems company

Ground Impact – Trajectory Plots 1500m / 2000m / 3000m – Gun at 0 vs. Altitude

An advanced weapon and space systems company

CTH Modeling of Ground Impact – 1500m

An advanced weapon and space systems company

1500m test at Ft. Rucker fired from ground-mount will produce shallow angle of impact that will make it difficult to initiate spotter fill.

CTH Modeling of Ground Impact – 3000m

An advanced weapon and space systems company

Increased angle of impact at 3000m may provide increased shear or thermal stress upon impact; however the impact velocity is reduced

2000m Test Range at ATPG

An advanced weapon and space systems company

ATPG Test Setup Photos – Gun to Target

conducted initial capability testing at 500m

Range (m)

ATPG High Speed Video – 500m testing against steel target

ATK-

ATPG High Speed Video - 500m testing against steel target

An advanced weapon and space systems company

ATPG High Speed Video - 500m testing vs. plywood target

- These 2 tests were conducted at 500m with full propellant load and show reaction on plywood in high-speed video, but not visible to unaided eye at gun (500m).
- When fired at 500m with 40% propellant load (simulating 1500m impact) there was no reaction seen on high speed video.

Demonstration Test Plan – Example of 27-Round test block

An advanced weapon and space systems company

Config 2

Total of 170 cartridges shipped for Demo **ATK Projectile Config** Config 1 Day or Firina Viewina Apache Gunner Apache Pilot Night Distance Distance View View Target Day 1500m 1500m Steel Day 1 Unaided Inaided Х Day 1500m 1500m Unai Х Dav 1 Steel 3 Target Unai 1500m Steel Х Day 1 Day 1500m Day Х Dav 1 Dav 1500m 1500m Types Steel Dav Х Day 1 Dav 1500m 1500m Steel PNVS FLIR Х Dav 1500m 1500m Day TV Steel Day 1

Day 1			500m	TADS FLIR	Unaided	Steel	Х	
Day 1	3 viewing		g 500m	TADS FLIR	Unaided	Steel	Х	
Day 1		nario	500m	TADS FLIR	Unaided	Steel	Х	
Day 1	Scenarios		500m	Unaided	Unaided	Plywood		Х
Day 1	Day	1500m	1500m	Unaided	Unaided	Plywood		Х
Day 1	Day	1500m	1500m	Unaided	Unaided	Plywood		Х
Day 1	Day	1500m	1500m	1500 & 3000m		Plywood		Х
Day 1	Day	1500m	1500m			Plywood		Х
Day 1	Dav	1500m	1500m			Plywood		Х
1500 & 3000m viewing range		1500m	- ming range		Plywood		Х	
		1500m	TADS FLIR	Unaided	Plywood		Х	
		1500m	TADS FLIR	Unaided	Plywood		Х	
		1500m	Unaided	Unaided	Earth	Х		
Day 1	Day	1500m	1500m	Unaided	Unaided	Earth	Х	
Day 1	Day	1500m	1500m	Unaided	Unaided	Earth	Х	
Day 1	Day	150	4500	ay TV	PNVS FLIR	Earth	Х	
Day 1	Day	150	Dav &	ay TV	PNVS FLIR	Earth	Х	
Day 1	Day	150		ay TV	PNVS FLIR	Earth	Х	
Day 1	Day	150	Night	DS FLIR	Unaided	Earth	Х	
Day 1	Day	150	liring	DS FLIR	Unaided	Earth	Х	
Day 1	Dav	150	mmy	DS FLIR	Unaided	Earth	Х	

ATK LW30 Spotter Charge - Ft. Rucker Demonstration Test Setup

ATK M230 LF Gun / ROI Raven system used at Ft. Rucker (ATK)

An advanced weapon and space systems company

Example of Steel Impact – Day and Night Testing

An advanced weapon and space systems company

Summary

A prototype spotter charge for the 30x113mm LW30mm Ammunition family was evaluated against multiple target media and ranges of trajectory

Modeling tools were used for analysis of mass properties, aeroballistic performance, stress analysis and impact thermal stress.

- PRODAS modeling provided ballistic match that was verified with radar tracking in ATK test.
- CTH hydrocode modeling indicated that predicted reaction of spotter material on ground impact would be marginal depending on impact angle and velocity.
- ANSYS stress analysis modeling provided design safety that was verified in structural integrity ballistic tests.

Demonstration testing conducted at Ft. Rucker tracked with the results from ATK testing:

- Reliable visible reaction when impacting <u>Steel</u> target, day and night at 1500m, and night at 3000m. Day impact at 3000 not available.
- Impact on <u>Plywood</u> target showed delay reaction behind target; at times was evident and scored by pilot as sufficiently visible allowing for adjustment. More evident at night.
- Limited frequency / Marginal short duration visible day / night when impacting ground at 1500m.
- 3000m testing did not reliably impact visible target area due to drift from cross winds (PRODAS)

Further development efforts on hold pending government evaluation of the demonstration testing and updated User need assessment.

Acknowledgements

An advanced weapon and space systems company

OPM-MAS

Maj. Glenn Dean Bill Wong Scott Bryan

ARDEC

John Hirlinger Jeff Darbig Rich Schrum Anthony Cortese Dameon Gabriel

<u>Ft. Rucker</u> Maj. Kevin Belden Bob Smithson Joe Webers CW3 Patrick Backmann

ATK –MCS Design

Larry Douma Jim Lamb Linda Heuer Gary Wittmer Don Gloude Vince Martinez

ATK - ATPG LAP

John Kraljic Dennis Martinson Scott Larson Rich Johnson Clayton Weitnauer John Kraljic Tony Teale Sandy Ohotto George Berning Eric Severson

<u>ATK –LS</u>

Curtis Fielding Dan Nielson Rick Tanner Steve Glaittli

<u>ATK – ABL</u>

Dave Starr Annette Staggs

ATK -ATPG Test

Bret George Dave Steffenhagen Don Newman Jim Raivala Cary Whetstone Tom Lorentz Joe Lamon Mike Cypher

ATK – MCS Programs / BD

Scott Teigen Rodney Ward Butch Nery Chris Stewart Ellis Clark Matt Berg

<u>ATK – AW</u>

Fred Stecher Wayne Hierlmaier Mark Krueger Dave Fehr

ATK – AW Dave Geiss Dave Darden

Recon Optical Doug Hagie