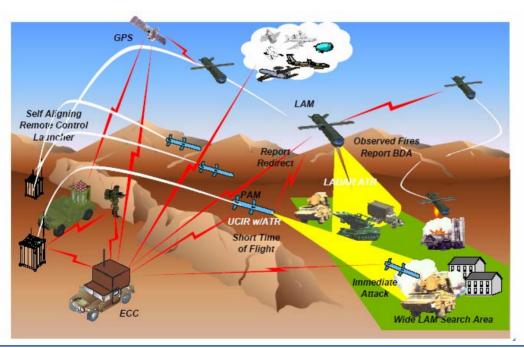
Development of the NLOS-LS PAM Warhead

43rd Annual Armament Systems: Guns & Missile Systems Conference & Exhibition

April 21 – 24, 2008 New Orleans, LA

NLOS-PAM Team

- Prime Contractor: NetFires LLC
 - ¬ Raytheon Missile Systems
 - Zerola Lockheed Martin Missiles & Fire Control



NLOS-PAM Overview

- Low cost, direct attack missile
- Provides precision fire support for the Brigade Combat Team and for USN Littoral Combat Ship

PAM System Description

- Large multi-mode warhead
- 7-inch diameter 120 lb class
- Range 0-40 kilometers
- Effective against moving and stationary targets
- In-flight updates, retargeting and image capabilities
- Target sets

 - Heavy armor
 - Bunkers
 - 7 Fortifications

PAM Warhead Effectiveness

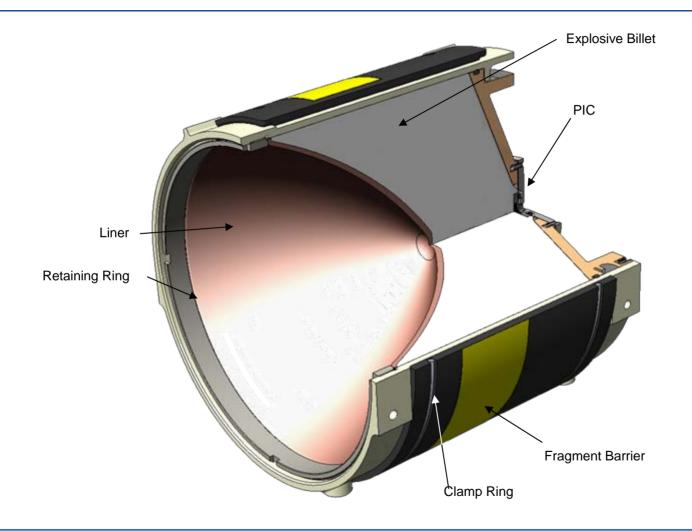
PAM Seeker Image of Land and Sea Targets

PO Box 11337 Tucson, AZ 85724-1337

Program Schedule

		L		_						,		_		·													
Event Name	I	FY 07		F		7 08		FY 09]	FY 10			FY 11				FY 12					FY	FY 13		
	1	2 3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
NLOS-LS SDD						1	NLO	S-L	S SD	D																	
(1) Critical Design Review	Λ				-4																						
Spin Out 1 Assessment					7		S	0 1	Asse	ssme	nt																
Tactical Prototype CLUs to AETF					Tac	tical l	Prot	otyp	e CL	Us																	
(2) SO 1 LLI					1	<u>.</u>																					
(3) SO 1 MS C									A																		
LRIP Award												LR	RIP														
Operational Testing																OI											
(4) Initial Operational Capability																			Δ								
(5) Full-Rate Decision																			5								
NLOS-LS S&T Increment I and Objective Systems		S&T for Increment I and Objective Systems																									
																Γ											

Multimode Warhead Challenges

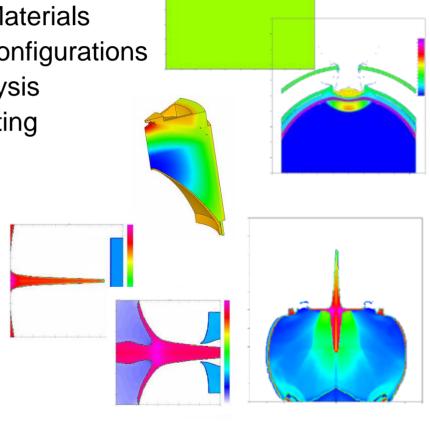


- Short Stand-Off
- High Penetration Performance
- Strict IM requirements
- Cost as a Key Performance Characteristic
- Small Envelope
- Evolving Requirements

Warhead Overview

Warhead Development

- Competitive Risk Reduction Effort
 - → Trade Studies
 - Explosive Material (Penetration Performance vs. IM Performance)
 - Casing Design (Materials to reduce sensitivity to Fragment Impact)
 - Liner Material Study (Penetration Performance vs. Cost)
 - Analysis
 - Penetration Performance (Hydrocode)
 - Seeker Keep Out Zone
 - - Jet Characterization
 - RHA and Armor Targets (Penetration Performance)
 - Soft Targets (Arena and Bunker Testing)
 - Insensitive Munitions Testing (Slow Cook-Off and Fragment Impact)
- Followed by the Detail Design Phase



Modeling & Simulation

- Fragment Barrier Analysis
 - Understanding the Physics
 - Study the effects of different Materials
 - Study the effects of different configurations
- Slow Cook-Off Performance Analysis
 - Design Features to Allow Venting
 - 7 Thermal Analysis
- Penetration Performance
 - ⊿ 2D Hydrocode
 - Optimize Design
- Jet Characteristics

 - Ensure Straightness of Jet

PAM Warhead Performance

Key Characteristic	Performance
Range target penetration depth	
Range target penetration diameter	
RHA penetration	
Mass	
Design to cost	

Performance Testing

- Tested 5 Different Design Variations
- Conducted over 100 Explosive Tests
 - Arena Testing
 - 7 Jet Characterization
 - RHA Penetration
 - Z ERA Target Penetration
 - Environmental Testing
 - Behind Armor Debris Testing
 - Reliability (Vari-Comp)

IM Testing

Threat	Test Results
Fast Cook-off	Type V
Slow Cook-off	Type V
Bullet Impact	Type V
Fragment Impact	Type V
Sympathetic Detonation	Type V*
Shaped Charge Jet	Type I*

*=Expected



Production Readiness

- Lean Design Effort
 - Use Low Cost Materials
 - Reduction of the number of Parts
 - Incorporation of Molded Components
 - Detail tolerance stack up analysis to optimize tolerances
 - Work with each component Vendors on reducing Cost Drivers
 - Streamline Assembly Process
- Early Development of Acceptance Testing
 - Perform Lot Acceptance Tests (LAT) to Characterize Variation
- Control of Critical Characteristics
 - 7 Characteristics that mostly control performance variation
- Pilot Production Line incorporated on Qualification Build

Design Challenges

- Striking a Balance between Low Cost and High Performance
- Integrating Production Processes early on
- Mitigating Fragment Impact and Slow Cook-Off Hazards
- Maintain Performance with Environmental Factors
- Incorporating Environmentally Compliant Processes and Products

Acknowledgements

Raytheon Missile Systems
Bill Zarr