

Methodology for Dynamic Characterization of Fragmenting Warheads

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Jason Angel - U.S. Army Research Laboratory

April 22, 2008 Guns & Missiles symposium New Orleans, LA

- BOTTOM LINE UP FRONT
 - 1 PROPOSED METHOD TO ASSESS FRAGMENTATION FOR DYNAMIC EVENT

OUTLINE

- 2 QUESTIONING EXISTING METHODOLOGY FOR FRAGMENTATION LETHALITY
- Background/Issues
- Approach
- Test Set-up
- Results/discussion
- Conclusions

CURRENT METHOD TO ASSESS FRAGMENTATION

• Static ARENA test

RNFFAI

- Statistical representation of the fragmentation
- Fragmentation File (Z-data file)
- Lethality models use Z-data and dynamic impact conditions
 - Impact velocity, orientation, etc
 - Predict number of impacts on personnel
 - Determine probability of incapacitation, P_{I}

- Currently no method to correlate to "Dynamic" testing
 - just a probability of achieving a level of Incapacitation

GMLRS as an EXAMPLE 📇

Z-data file established
P_I for impact condition computed
Performed dynamic event

mannequins assessed for lethality
all personnel fell within bands (P_I +/-)

ISSUE - no statistical correlation to fragment spray

RDECOM

Joint Live Fir

Ground System

APPROACH

• Goal:

RNFFI

• Demonstrate method to collect fragmentation data in a dynamic event to produce higher statistical confidence in results

• Evaluation Concept:

- Use warhead with well established Z-data file
- Collect fragment spray via metallic witness panels located in an arena arrangement
- Compare perforations in the panels from the detonated warheads to those predicted using the static arena file
 - Static event no projectile velocity, serves as a baseline
 - Dynamic event incoming velocity will be applied

•105mm HEP round

RDECOM

- inventory since 1970s
- new Z-data file recently produced
- Metallic Witness panels

Joint Live Fire

Statically detonated from Platform

One side of Panel Arrangement

TEST OVERVIEW

Test Setup:

Collect fragmentation with metallic panel array in "arena"

Dynamic – fire 105mm HEP projectile through wood to detonate

Static – statically detonate HEP projectile

Measurements:

Panel array surveyed prior to test

Photograph panels, use image software to record position of impacts

Dynamic – use radar and video to determine impact velocity and location of warhead when it burst

TEST RESULTS - STATIC

TEST RESULTS

Test Number	Detonation Condition	Velocity Muzzle/Striking (m/s)	Test Objective	Result
-		(m/s)		
1	Dynamic	LOST	verify fuze function on the selected target material.	Proper Tuze Tunction
2	Dynamic	759 / 746	Verify fuze function on the selected target material	Proper fuze function
3	Dynamic	763 / 751	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
4	Dynamic	758 / 744	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
5	Dynamic	758 / 747	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
7	Dynamic	754 / 744	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
8	Dynamic	762 / 749	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
9	Static	N/A	Collect static distribution of fragments from the witness panels	Distribution Collected
11	Static	N/A	Collect static distribution of fragments from the witness panels	Distribution Collected

All Evaluated a 90° Attack Angle and 0° Azimuth

TEST RESULTS

Test Number	Detonation Condition	Velocity Muzzle/Striking (m/s)	Test Objective	Result
2	Dynamic	774 / 761	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
3	Dynamic	761 / 749	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
4	Dynamic	759 / 746	Collect dynamic distribution of fragments from the witness panels	Distribution Collected
5	Static	N/A	Collect static distribution of fragments from the witness panels	Distribution Collected
6	Static	N/A	Collect static distribution of fragments from the witness panels	Distribution Collected

All Evaluated a 90° Attack Angle and 0° Azimuth

DATA REDUCTION

RDECOM

1-8

PREDICTED FRAGMENTATION

RDECOM

STATISTICAL ANALYSIS (STATIC)

STATISTICAL ANALYSIS (DYNAMIC)

Joint Live Fire Ground System:

Overestimate of fragments in the beam spray.

Underestimate of fragments in the nose and tail regions.

VEN. WARFIGHTER FOCUSED.

SUMMARY

Static evaluation - good agreement Dynamic estimates show less fragments in the front

Implications of differences in results

- Interaction of warhead expansion with wood during the dynamic detonation
- Parasitic debris from warhead is hitting panels in front for dynamic event
- Accuracy of fragment velocities of Z-data file more of an effect on dynamic event

May need a new format for Z-data (3-dimensional)
 Need to evaluate other warheads under same controlled conditions to prove theory

Joint Live Fire

Ground System

CONCLUSIONS

Method collects data over a much larger range than previously gathered for dynamic events

This wider area results in a much greater confidence in verifying performance of fragmenting warhead

Review Current Z-data (arena) methodology

SUGGESTIONS:

- 1) Add metallic witness panels on "Live-Fire" evaluations
- 2) Include an intermediate evaluation with metallic witness panels prior to "Live-Fire" evaluations
- 3) Review fragmentation Evaluation methodolgy

BOTTOMLINE

DEMONSTRATED SIMPLE METHOD THAT VERIFIES THE OVERALL SPREAD OF FRAGMENTS IN DYNAMIC EVENT

OBSERVED ISSUES WITH CURRENT Z-DATA FILE METHODLOGY

QUESTIONS ????