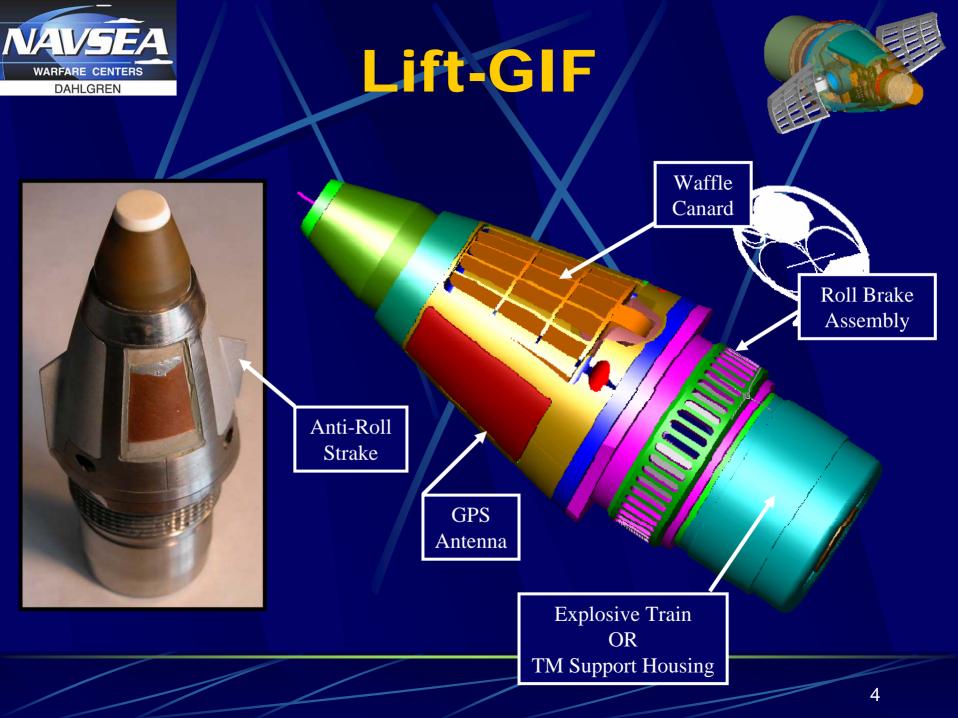
Electronic Test Fuze

Wayne Worrell Hamish Malin NSWCDD G33 Precision and Advanced Systems Branch

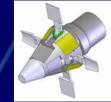
ELECTRONIC TEST FUZE - ETF

What is ETF?

- Designed to support realistic gun-shock testing of myriad subsystems
- Digital processor can command and control subsystems under test in flight.
- ETF is a diagnostic suite of sensors including 3 axis magnetometer and single axis accelerometer
- ETF is an analog and digital signal multiplexer that encodes data into a single stream used to modulate an RF transmitter
- ETF is a gun hardened system with self contained power modules


Program Overview

Electronic Test Fuze (ETF) designed to support Guidance Integrated Fuze (GIF) program



VariPitch

4-Patch GPS Antenna System

HOB Sensor

GIF-Based GEU with Advanced Anti-Jam and Backup "Command Mode" using PTS if GPS is Denied **COTS Battery Module**

Control Panels that Rotate Controlling the Spin Rate and "throttling" the Drag

GIF COTS Actuator

GIF/VP Advantages:

- Simpler than Navy "Lift-GIF" yet more robust in terms of Jamming and Reliability.
- ~\$1K Less Expensive in Production
- Capable of a 15m to 20m CEP.
 Applicable to All Ammo Types.
- Meets or Exceeds PGK Inc 1/2/3 Requirements.
- Leverages All Previous Navy-GIF Developments except the Roll Brake and Bearing Assemblies.

Drag Panels Don't Rotate

Miniaturized GPS SAASM Receiver Technology

- No Existing Product Could Meet GIF Requirements
- Awarded Contract to Mayflower Communications for Development of GPS Receiver
 - Low Cost (< \$500)
 - Low Power (< 1W)
 - Small Size (< 2 in²)
- Phased approach:
 - C/A Version w/ FPGA Available Now!!
 - P(Y) SAASM Receiver (TRL 6) Available Fall 2008
- Not GIF-Centric
 - One Product, Many Applications

→40mm diameter (VP Form Factor)

Overview - ETF Fully designed in-house at NSWCDD Initially designed to support in-flight testing of ElectReleaseTM for Lift-GIF Designed to support realistic gun-shock testing of myriad subsystems Six successful flight tests to date

Board Stack - General

FPGA Board
FPGA I/O Support Board
Sensor Board
Power Board
Batteries

FPGA Board

 Interfaces with ADCs and sensors
 Controls & monitors various subsystems under test

- HOB sensor,
- ElectRelease actuator,
- IR transceivers,
- GPS Rx
- Measures (time = 0) from forward-looking accelerometer

Encodes test data into telemetry stream

FPGA architecture makes ETF adaptable for future tests

Sensor Board

Silicon Designs 20k-g 1-axis accelerometer Honeywell HMC 1053 3-axis magnetometer 2 Maxim MAX274 8th-Order Active Filters provide 2nd-Order Chebyshev LPF for each channel 2 12-bit, 8-channel TI ADS7852 ADCs sample at up

Vias available for additional external sensors

Battery Puck & Power Board

- Current configuration utilizes 4 CR2s
- Puck is designed to be removable such that fresh batteries can be used for flight
- Supplies 5V, 2A; 4V, 500mA
- Other voltages possible
- Current puck can power full ETF stack for > 2hrs

IR Link

Projectile-Embedded Telemetry

IR Battery Puck

TM Transmitter & Antenna

- M/A-COM MA06836 ½-Watt S-Band HSTSS Telemetry Transmitter
- Three Antenna Versions

- Round D-Fuze TM Antenna for 'simple' ETF
- IR link integrated between the fuze & the projectile to expand fuze test volume
- GIF GPS Antennas also re-tuned to S-Band for future test applications

IR Transceivers Vishay TFBS6614 IrDA used for IR Battery Puck for TM link Vishay TFBS4711 IrDA to be used for cover release verification • Determine if canard covers have been successfully deployed 2 transceivers/cover

TIL

TM Data format Manchester encoded 1 Mbps data rate 1024 bits/frame (1.024 ms frame), including: • 32 bit frame sync • 24 bit frame counter 32 bit checksum

ETF Telemetry Frame - 18 April 2007 Test Shot updated on 16 April 2007

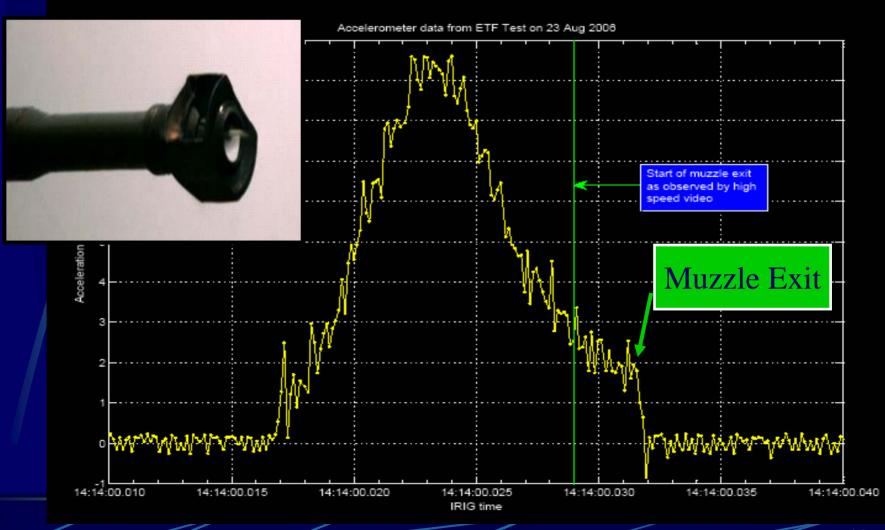
Byte	0 1	2 3	4	5	6 7	8	9	10	11	12	13	14 1	5	16 1	7 18	8 19	20	21	22	23	24	25	26 2	27	28 29	30 31
16-bit word	0	1	2		3	4	4	5		6		7		8		9		10	1	1	12	2	13		14	15
32-bit word		0		1				2			3	5			4			Ę	5			6	6		7	7
Data		e Sync -32019)	A		F Power		G	PS			GF	PS -			Fra Cou			A	Ν	И1(i)	М	1(j)	M1(k)		

Byte	32 33	34 35	36 37	38 39	40 41	42 43	44 45	46 47	48 49	50 51	52 53	54 55	56 57	58 59	60 61	62 63
16-bit word	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32-bit word	3	3		9	10		11		12		13		14		1	5
Data		GPS	A	GPS	GI	PS	G	PS	G	PS	A					

Byte 64	4 65 66	67	68 69	70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
16-bit word	32 3	33	34	3	35	36	6	3	7	- 3	8	3	9	4	0	4	1	4	2	4	13	4	4	4	5	4	6	4	7
32-bit word	16			17			1	8			1	9			2	0			2	1			2	2			2	3	
Data			А																Δ	Λ	/11(i)		/11(j)	M	11(k)				

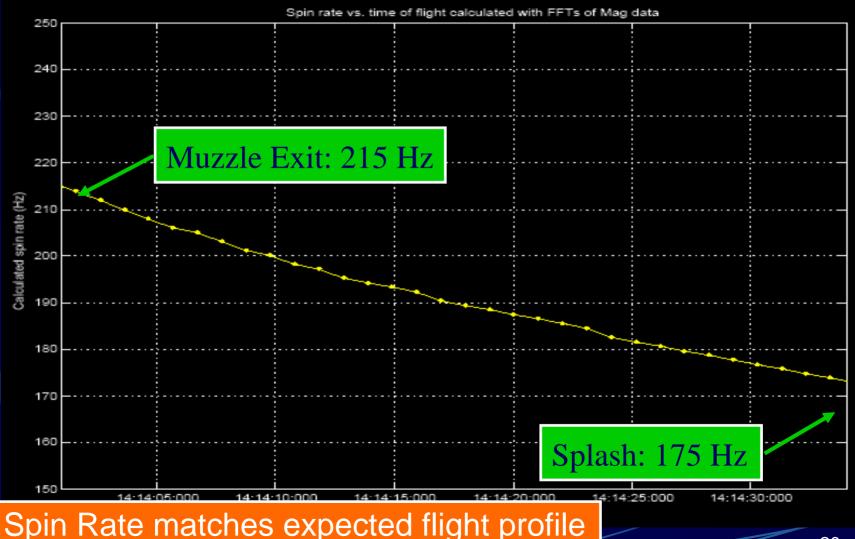
Byte	96 97	98 99	100 101	102 103	104 105	106 107	108 109	110 111	112 113	114 115	116 117	118 119	120 121	122 123	124 125	126 127
16-bit word	48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
32-bit word	24		25		26		27		28		29		30		31	
Data			A								А		TOF		CRC Ch	lecksum

ſ			Resolution	# of	Samples /	Sample	Bandwidth
	Label	Signal	(bits)	Channels	Frame	Rate (kHz)	(kHz)
	А	High-G Accelerometer	12	1	8	7.81	93.75
*	M(i) M(j) M(k)	3-axis Mags (1 = South, 2 = North)	12	3	2	1.95	70.31
	TOF	Time of Flight (ms)	20	1	1	0.98	19.53
*	F	Flags: In flight; Actuator Power; HOB Power; HOB CO	1	1	1	0.98	0.98
	GPS	GPS Data, see additional sheet for more info	168	1	1	0.98	164.06
	Frame Sync	Frame Sync (0xFAF32019)	32	1	1	0.98	31.25
	Frame Counter	24-bit counter (~4.8 hours of unique numbers)	24	1	1	0.98	23.44
	CRC Checksum	32-bit Cyclic Redundancy Check	32	1	1	0.98	31.25
						Total:	43.46%



Flight Test 1 August 2006

- Core ETF stack shot at 7R out of 155mm Howitzer on Dahlgren AA Fuze Range Primary objective of survival met
- 99.96% of telemetry data recovered with receivers stationed at fuze range
- Primary sensors survived and functioned



Flight Accel. Data

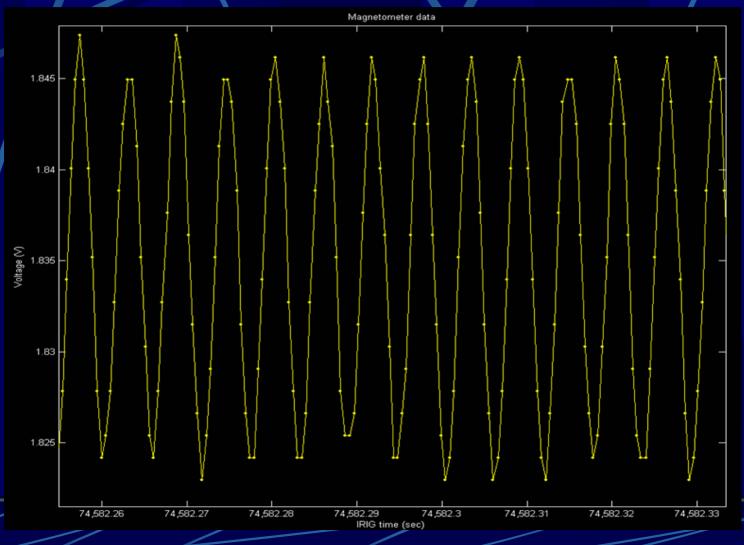
Flight Mag. Data

Flight Test 2 November 2006

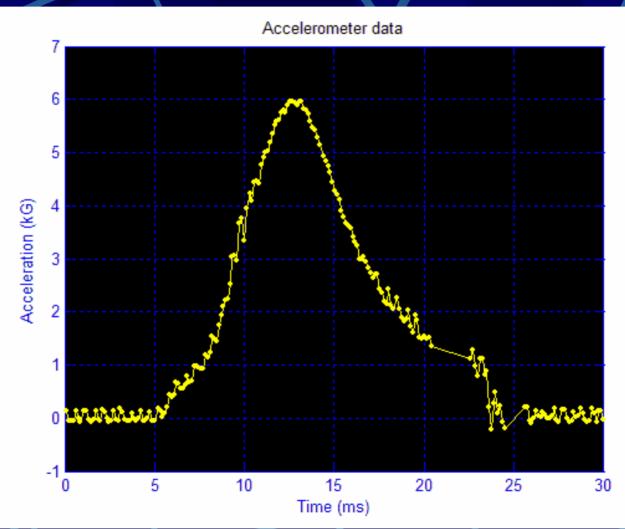
 ETF with IR Link shot at 7R out of 155mm Howitzer on Dahlgren AA Fuze Range
 Primary objective of survival met, both for fuze and aft TM section
 Primary sensors survived and functioned

Flight Test 3 April 2007

 ETF with Mayflower GPS receiver shot at 7W out of 155mm Howitzer on Dahlgren AA Fuze Range
 Primary objective of receiver survival met


Flight Test 4 August 2007

- ETF with Mayflower GPS receiver shot at 7W on Dahlgren AA Fuze Range 99% of telemetry data recovered with receivers stationed at fuze range
- Primary sensors survived and functioned
- Valid GPS Receiver data collected the duration of the flight


Mag. Data

24

In-Bore Accel. Data

25

Future ETF Uses

- May 2008 Follow-up C/A GPS Receiver Test Shot
 - Used on other gun programs to record gun fire dynamics Ongoing
- December 2008 Mayflower P(Y) GPS Receiver Test Shot

This bullet reserved for YOUR subsystem!

2+ cubic inches available to test other subsystems

Basic Cost

Core Electronics: \$3500
Mechanical Hardware: \$3000
EE Hardware Test: \$2000
Mechanical Assembly: \$1500

Total: \$10K / unit

Acknowledgements

Electrical Team – Mike Irwin, Travis James, Hamish Malin, Wayne Worrell

Mechanical Team – Marc Bassett, Mark Engel, Nathan Joswiak

QUESTIÓNS ?

Backup Slides