

Better Security via Randomization: A Game Theoretic Approach and its Operationalization at the Los Angeles International Airport

Milind Tambe, Fernando Ordonez

CREATE: Homeland Security Center University of Southern California, Los Angeles

Objective: Guarantee Randomness of Security **Processes While Meeting Security Quality Requirements**

- Limited /uncertain knowledge of opponent(s)
- Opponent monitors defenses, exploits patterns
- Examples: Patrolling, aerial surveillance,...

Research Problem Definition and Results

- Randomize under uncertain adversarial domains
- Research results:
 - Part 1: Plan randomization with quality constraints
 - No adversary model, Information minimization
 - Decision theory
 - Part 2: Strategy randomization with quality constraints
 - Partial adversary models
 - Game theory
 - Part 3: Application to Airport Security

Part I: No Adversary Model Example

Part I: No Adversary Model: Information Minimization

- Intentional plan randomization for security
 - MDP/POMDP: Planning under uncertainty
 - MDP: Markov Decision problems
 - Difficult for adversary to predict even if knows plan

USC

- New algorithms: single agent & teams
 - Reward > Threshold (e.g. fuel)
 - Non-linear program (inefficient but exact), linear program (efficient but inexact)

Example Computational Results for Single Agent *Conclusion: Randomization Recommendation is Computationally Solvable*

Part II: Security with Partial Adversary Models

Partial model of adversaries:

- Hardline, well-funded, high capability adversary
- Moderate capability adversary
- How to randomly allocate security resources:
 - k-9 units/officers to terminals

Part II: Model via Bayesian Stackelberg Game

- Agent (police) commit to strategy first, e.g. canine units to terminals
- Adversaries optimize against police strategy
- Bayesian: Probability distribution
 over different adversary types

Adversary

SICE OFFICE		Terminal #1	Terminal #2
	Terminal #1	5, -4	-1, 3
AIRPORT POLICE Police	Terminal #2	-5, 5	2, -1

Bayesian Stackelberg Game: New Algorithms

- Mixed-integer linear program (MILP)
 - 1. Exact Solution: DOBSS
 - 2. Heuristic solution: ASAP
 - Mixed strategies
 - Weighted randomization: non-uniform
 - E.g. Not 50%-50% split, but 73%-27% split
- Exponential speedups over prior algorithms

Once again, computational solution feasible

PART III: Application at LAX

Assistant for Randomized Monitoring Over Routes (ARMOR) Project

An Interdisciplinary Counter-Terrorism Research Partnership: Los Angeles World Airports & The University of Southern California

PART III: Applications

- **Problem**: Setting checkpoints and allocating K9 units?
- **Approach**: Maximize security through mathematical randomization

• **Goal**: Create software assistants

ARMOR

- Assistant for Randomized Monitoring Over Routes
- DOBSS basis of ARMOR
- ARMOR-Checkpoints
- ARMOR-K9

Knowledge in ARMOR-checkpoint

- ARMOR-checkpoint base requires knowledge:
 - Numbers of possible checkpoints
 - Time of checkpoint operation
 - Traffic flow and its impact on catching adversary
 - Estimated target priority for adversary
 - Estimates of cost of getting caught to adversaries
 - Estimates if "different types" of adversaries and their probabilities (e.g. differ in their capabilities)
- Converted into utilities

-

📰 ARMOR - Checkpoint

File Restrictions Reports

Randomness: Uncalculated

					Tue	sday	y			W	/edr	nesd	lay	y Thursday						Friday						Saturday					Sunday					Monday					
Checkpoint #: 1 2			2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5	6	1	2	3	4	5 6	5 1	2	3	4	5	6	1	2	3	4 5	5 6	1	2	3	4	^	none
•	8:00-10:00 AM																																								2
	10:00-12:00 AM																	1																							
	12:00-2:00 PM																1											1													
	2:00-4:00 PM																																								
	4:00-6:00 PM																																								
	6:00-8:00 PM				1								1					Γ										1							Î				Î		
	8:00-10:00 PM				1				1				1				1				1			1				1							Ĩ.						-
			1	1	Ľ.	1	1	1	12	1	1_	1	l.	1	1	1	100	t_					1	- D	1.	1	1									1	1		>		Remo At-Le

ARTA CARACTER

September 28, 2007

Newsweek National News

The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles International Airport are introducing a bold new idea into their arsenal: random placement of security checkpoints. Can game theory help keep us safe?

Security forces work the sidewalk at LAX

Checkpoint Frequency

Conclusion

- New algorithms: guarantee randomness while meeting quality requirements
- Computational techniques that allow practical applications
- Initial demonstration with LAX working well

THE END