RISK COMMUNICATIONS AND PUBLIC WARNINGS

"Brief-out from the July Workshop"

Dennis S. Mileti, Professor Emeritus University of Colorado at Boulder & START-DHS Center University of Maryland 2008 Homeland Security Science & Technology Stake-holder's Conference-West Los Angeles, California January 14, 2008

WORKSHOP PURPOSE

Bring Together Experts:

Researchers & Practitioners

Summarize Knowledge

Catalogue Applications Needs

Create Future Agendas for:

- Research
- Applications

Develop Partnerships:

- Across Research Disciplines & DHS Centers
- Between DHS & Other Federal Research Agencies

REGARDING....

- Public Preparedness Education
- Public Warning Response
- Warning System Preparedness
- Adoption of State-of-the-art Warning Practices
- Pre-event Public Risk Perception
- Warning Delivery Technologies

TODAY'S PRESENTATION

Summarize Some Highlights:

- I can't cover everything in 45 minutes
- Review Research Findings for Public Risk Communication Practice:
 - Evidence-based applications to support this aspect of emergency response practice
- Emphasize Workshop Topics of Greatest Interest to First Responders

WHAT TO GET FROM MY TALK

- DHS is Funding Research to Support First Responder's Work
- Some Researchers are Generating Knowledge you can Use
- You have Researcher Colleagues you Probably Haven't Met

FUNDAMENTAL QUESTION

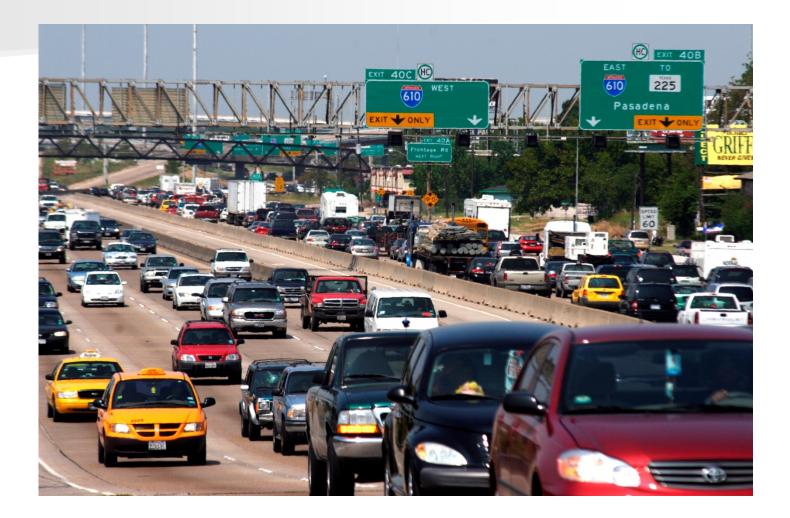
How do you Help People to:

HEAR....

& TAKE ACTION FOR....

TECHNOLOGICAL EVENTS

NATURAL HAZARDS



HAZARDOUS MATERIALS AND OTHER TYPES OF EVENTS

INCLUDING....

VEHICLE EVACUATION

SIDEWALK & STAIRWELL EVACUATION

SHELTER IN PLACE

PROTECT BREATHING

Helps Keep Radioactive Dust or Smoke From Entering Your Body

THE RESEARCH SETTINGS

Researched for 50+ Years

Across Different Hazards, e.g.,

- Natural: e.g., Hurricane Camille, Mt. St. Helens Volcano
- Hazardous Material Accidents: e.g., Mississauga, Nanticoke
- Technological Events: e.g., Three Mile Island
- Terrorist Attacks: e.g., 1993 & 9/11 World Trade Center
- Building Fires: e.g., MGM Grand Hotel, Cook County Hospital

We Know:

- What works & why
- And how to apply it in practice

RESEARCH ON PEOPLE IN COMMUNITIES

Natural Hazards Center Institute of Behavioral Science University of Colorado at Boulder 482 UCB Boulder, CO 80309-0482

phone303.492.6818fax303.492.2151

www.colorado.edu/hazards/

350 Page Annotated Bibliography:

One page per publication includes key findings

Available at:

http://www.colorado.edu/hazards/publications/i

<u>nformer/infrmr2/pubhazbibann.pdf</u>

"Varied" in Quality

RESEARCH ON PEOPLE IN BUILDINGS

150 Entry Standard Bibliography "Varied" in Quality Available at: insert reference here

"PEOPLE" KNOWLEDGE TRANSCEND HAZARDS

<u>Why</u>: People Stay People Across Hazards <u>Same</u>: Determinants of Public Behavior:

- Mathematically modeled & we know the equations
- Equations (& the factors in them) are the same

Different: Public Behavior "Outcomes":

 Because of different "quantities" for the factors in the equations that determine behavior across events

TOPICS COVERED TODAY (workshop subset)

- Topic 1: Myths
- Topic 2: Alert
- Topic 3: Diffusion
- Topic 4: Mobilization
- Topic 5: Notification & Response
- Topic 6: Warning System Preparedness
- Topic 7: What's Needed

<u>TOPIC 1</u>: THREE MYTHS

MYTH 1: PANIC

Non-problem:

Never occurred after a warning

Actual Problem:

 "We didn't issue a warning so we wouldn't cause a panic"

Panic Occurs When:

- In a confined space
- Escape routes are available
- Think: not enough time for everyone to reach safety
- Think: non-escapees will die
- Even then Panic is Rare

MYTH 2: "KISS"

Definition:

"Keep it simple stupid"

Myth:

Applies to public warning information

Reality:

- Applies to advertising, not warnings
- People become "information starved"
- If you don't tell enough, they'll get it elsewhere

MYTH 3: CRY WOLF

- Public Does Respond After False Alarms
- False Alarms are Productive if Explained
- Repeated False Alarms Anger Local Government because they Cost Money
- Non-response comes from Poorly Worded or Delivered Warnings, Not False Alarms
- Exception -- People Ignore Sirens:
 - If sounded frequently, e.g., for siren tests

Inter-up Ongoing Life

Get People's Attention

Capture Your Audience

PEOPLE DON'T REMEMBER INDICATORS

People:

- Don't remember the meaning of:
 - Siren signals (wails, whoops, tones)
 - Color codes
- Don't distinguish between:
 - Advisories, watches & warnings

Exception:

 When signals/codes are "drilled" into people, e.g., weekly fire drills in schools

ALERTING ISN'T SIMPLE

- Many Isolate "Themselves" from Information
- Some are Isolated by Circumstance, e.g., Poor
- Even when Signals Blare, Many:
 - Think they're "safe" &
 - Disasters happen to other people
- Different Sub-populations Need Unique Alerts, e.g.,
 - Hospitals in communities
 - Hearing impaired in buildings
 - Visitors & "out-of-towners"

USE "OBTRUSIVE" ALERTS

Grab People's Attention, e.g.,

- Turn up lights in a theater
- Piercing sounds with TV crawlers

Wake People Up, e.g.,

- Sleeping children & older adults
- People with hearing loss & under the influence

Outside Devices Loose Effectiveness if:

- Windows are shut & air/heat is on
- A 3 minute sounding of a 10 dBC over ambient outdoor siren has a 62% chance of waking someone up

Indoor Devices for Rapid Alert at Night:

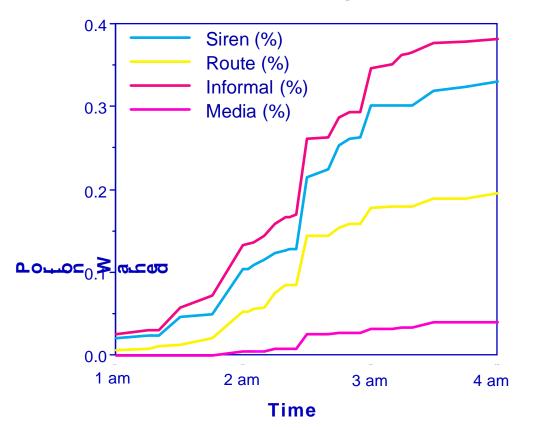
- Or "Special" outside devices
- Important for, e.g.,
 - Fast moving community event
 - Fire in an apartment or hotel

INFORMAL ALERTING

- Diffusion of Warnings "Among the Warned"
- Always Happens, Count on It, Make Use of It
- 9/11 Example:
 - Most in country learned about attack in 1 hour
 - Many in Towers found out a plane hit from friends/relatives

Rule of Thumb:

- For every 2 formal 1st warnings, there's 1 informal 1st warning
- Informal Alerting Increasing with New Technologies


<u>TOPIC 3</u>: DIFFUSSION

Diffusion is "Getting the Word Out" Warning Diffusion:

- A "social process" no matter what technologies are used
- Different technologies have differential effectiveness
- Impacted by time of day/night
- Includes formal & informal notification

DIFFUSSION DATA EXAMPLE

Diffussion of Warning at Nanticoke

TOPIC 4: MOBILIZATION

- Definition: "Time between Getting 1st Warning & Starting a Protective Action"
- People Don't All Act at Once
- Getting Ready to Respond Delays Response

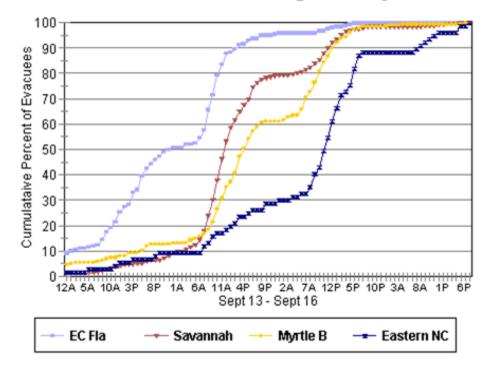
Why People Delay:

- Locate family
- Gather possession
- Confirm the warning &/or need to take action
- Talk things over with others

A Few People don't Respond at All

A VIEW OF MOBILIZATION

Varies by:


- Urgency of event
- Severity of threat
- Time of day/night
- Time increases as message quality decreases

Non-linear (curved) Relationship between Time & Starting a Protective Action:

- Typically an "S" shaped relationship
- Here's an example....

HURRICANE FLYOD DEPARTURE TIMES

Evacuation Timing in Floyd

<u>TOPIC 5</u>: NOTIFICATION AND PUBLIC RESPONSE

PREDICTING PUBLIC RESPONSE

Predictions About it Work Best if:

 Made on basis of factors that determine behavior (e.g., "A" causes "B"), e.g., science

Predictions that Don't Work:

- Predicting from what people did in past events
 - Public behavior varies across events
- Predicting from "behavioral intention" surveys conducted during non-emergency times
 - Opinions (intentions) & behavior are different
 - Factors that determine warning response behavior:
 - Not operating in a survey
 - Likely unknown to respondents

FACTORS THAT IMPACT PUBLIC RESPONSE

Many Statistically Significant Factors Documented by Research

Variation in Importance:

- Strong vs. weak effects
- Real vs. spurious effects
- Elaborate vs. weak evidence

All that Follows is "Highly" Supported

INFORMATION FACTORS

"About the Warning Message"

FACTOR 1: THE MESSAGE

Five Dimensions:

- Channel
- Frequency
- Content
- Style
- Source

FACTOR 1: THE MESSAGE (cont'd)

Number of Channels:

The "more the better"

Type of Channel:

- Personal channels work best
- The "more the better"

Communication Frequency:

- The "more" its repeated/heard "the better"
- Repetition fosters confirmation

FACTOR 1: THE MESSAGE (cont'd)

Content:

- WHAT: Tell them what to do
- WHEN: Tell them when (time) to do it
- WHERE: Say who should do it & who shouldn't
- WHY: Tell about the hazard's consequences
- WHO: Say who's talking (source):
 - There is NO single credible source, so use a panel

FACTOR 1: THE MESSAGE (cont'd)

Style:

- CLEAR: The more simply worded the better
- **SPECIFIC**: Precise & non-ambiguous
- ACCURATE: Errors cause problems
- **CERTAIN**: Authoritative and confident
- CONSISTENT:
 - <u>Externally</u>: Explain changes from past messages & differences from what others are saying
 - Internally: Never say "attack will occur soon, don't worry"

FACTOR 2: CUES (Non-verbal Information)

Social Cues Help:

- "Monkey see, monkey do"

- People: Neighbors, Friends, & Relatives
- Organizations: Government, Businesses, NGOs

Physical Cues Help too:

- If confirm the risk (rain in flood warnings)

SOME HAZARDS HAVE CUES & SOME DON'T

PEOPLE FACTORS

"About the Audience"

FACTOR 3: "STATUSES" (AS CONSTRAINTS)

Socio-economic Status:

- Having little money, education, employment

Age:

- Being young or old

Gender:

- Being male

Ethnicity:

Being non-Anglo

Acculturation:

Not speaking English, born in another country

FACTOR 4: "ROLES" (AS INCENTIVES)

Roles of Responsibility for Others:

- Having children
- Larger family size
- Having pets
- More kin relationships
- Family united
- Greater community involvement

FACTOR 5: EXPERIENCE

People "Normalize" Risk Information Received Based on their Personal Experience:

 People are inclined to do what was appropriate in the "last" event experienced

PROCESS FACTORS

How Message & People Factors Interact

FACTOR 6: BELIEF

There is "NO" Single Credible Spokesperson:

- STOP LOOKING FOR ONE
- People have different ideas about who's credible

You're Asking the Wrong Question:

- Many "think" spokesperson credibility = message belief
- They're different

Warning Belief is What's Important & Here's How to Achieve it:

- 1. Issue "one message" with "**MULTIPLE** spokespersons":
 - Officials, Red Cross, scientists, familiar newscaster, & others
- 2. Use MULTIPLE dissemination channels
- 3. Repeat the message **MULTIPLE** times:
 - Repetition fosters belief (discovered in 1952 in advertising research)

Here's as Good as Single Spokespersons Get....

MOST CREDIBLE SOURCE IN AMERICA (for about 35%)

FACTOR 7: KNOWLEDGE

Multi-faceted Concept Including:

- <u>Past</u>: What people "import" into the event
- <u>Present</u>: What people "think" based on the information/cues they get during the event
- <u>Natural Inclination</u>: "I'm safe & I don't need to know anything else"

Its Not Static and Changes

Manage it in Warning Messages:

- Provide warning information that "overcomes" differences in people's:
 - Past, present, & natural inclinations

FACTOR 8: PERCEIVED RISK

Perceived Risk "During the Event":

- Different from pre-event risk perception
- Major roadblock to taking action:
 - "I'm safe" & I'll find information that confirms it, that's what I'll believe, and I'll ignore the warning"
- People dichotomize risk:
 - Do something/do nothing
 - Its not in proportion to probability estimates
- Remember:
 - People "Normalize" Communicated Risk

FACTOR 9: MILLING

Milling/Confirmation:

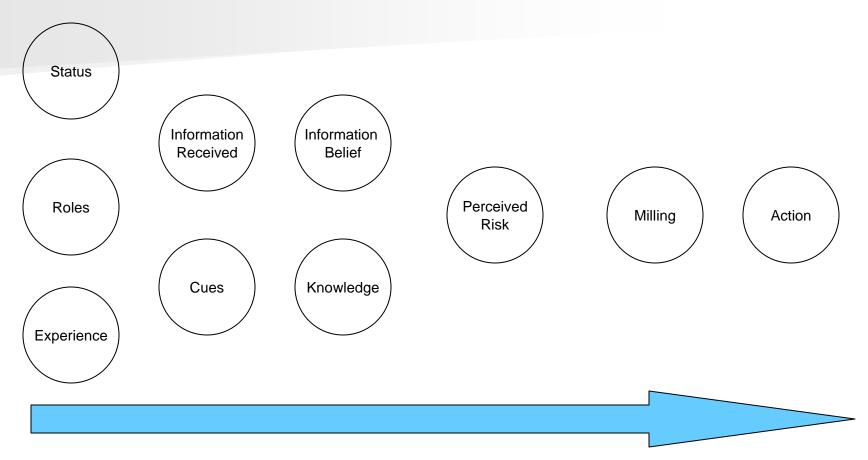
- "Key" to warnings that work
- Nobody does something because someone tells them to do it
- People have to think its their own idea
- Comes from milling (talking about it with others & getting confirming information):
 - Risk & what to do about it needs to be "confirmed" through additional information & talking it over with others

HOW ALL THESE FACTORS RELATE TO EACH OTHER

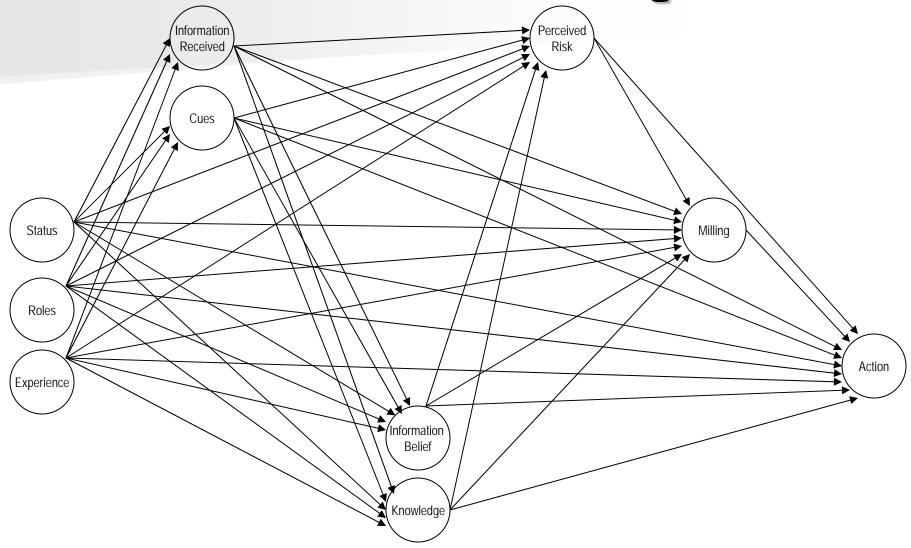
SEQUENCED CUMMULATIVE EFFECTS OF FACTORS, e.g.,

Perceived Risk Determined by:

- Multiple communications
- Multiple channels


Milling Determined by:

- Multiple communications:
- Multiple channels
- Perceived risk


Warning Response Behavior Determined by:

- Multiple communications
- Multiple channels
- Perceived risk
- Milling

SEQUENCING THE FACTORS

MODELLING THE SEQUENCE

CONVERTING THE MODEL TO MATHEMATICS

Represented by Equations:

- Called a "series of simultaneous multiple regression equations"

Can Determine:

 The effect of every factor in the model on other factors while controlling for the effects of all other factors ("good" science)

Result is:

Can distinguish between what's really important and what isn't

When to Get Excited:

- When different studies reach the same conclusions
- That's where we are with research on public response to warnings for hazardous events

EXAMINE SOME EQUATIONS (WTC Evacuation on 9/11)

 $X4 = \beta 41X1 + \beta 42X2 + \beta 43X3 + e4$ $X5 = \beta 51X1 + \beta 52X2 + \beta 53X3 + \beta 54X4 + e5$ $X6 = \beta 61X1 + \beta 62X2 + \beta 63X3 + \beta 64X4 + \beta 65X5 + e6$ $X7 = \beta 71X1 + \beta 72X2 + \beta 73X3 + \beta 74X4 + \beta 75X5 + \beta 76X6 + e7$

(cf. Averill, J. D., D.S. Mileti, R.D. Peacock, E.D. Kuligowski, N. Groner, G. Proulx, P.A. Reneke, and H.E. Nelson. 2005. <u>Federal Building and Fire Safety</u> <u>Investigation of the World Trade Center Disaster: Occupant Behavior, Egress, and</u> <u>Emergency Communications</u>. *Report NCSTAR 1-7*, National Institute of Standards and Technology, Gaithersburg, MD.)

Available at: http://wtc.nist.gov/NISTNCSTAR1-7.pdf

CONCLUSIONS FROM THE MATHEMATICS

- All Factors **AREN'T** Equally Important
- Some Factors are **REALLY** Important:
 - What the message says:
 - Especially telling what actions to take
 - Hearing the same thing many times
 - Cues
 - Milling
- Some Factors are **LESS** Important:
 - Demographics (unless information is poor)
- Some Sequences MORE Important than Others

GENERAL OBSERVATIONS

Information (Message) Factors:

- Largest impact of all factors on public response

If Information Factors are High Quality:

- Influence of other factors "decrease"
- Ability to manage public response can be high
- Example: Nanticoke

If Information Factors are Low Quality:

- Influence of other factors "increases"
- Ability to manage public response can be lost
- Example: Three Mile Island

GENERAL CONCLUSIONS

Sound Public Warning Response is not Likely to Happen Naturally:

- Due to innate difference between the people being warned

Differences between People being Warned:

- Can be overcome by providing good warning information
- Good Warning Information won't Happen Naturally either:
 - Requires adequate warning preparedness planning
- Sufficient Research Evidence Exists to Know What Adequate Warning Preparedness should Include

<u>TOPIC 6</u>: WARNING SYSTEM PREPAREDNESS

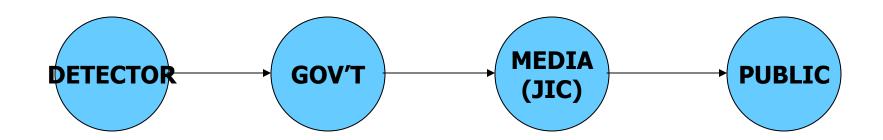
Warning System Preparedness May be Out of Date

- Why?:
 - Society changed
 - Warning preparedness hasn't
- Here's What Changed.....

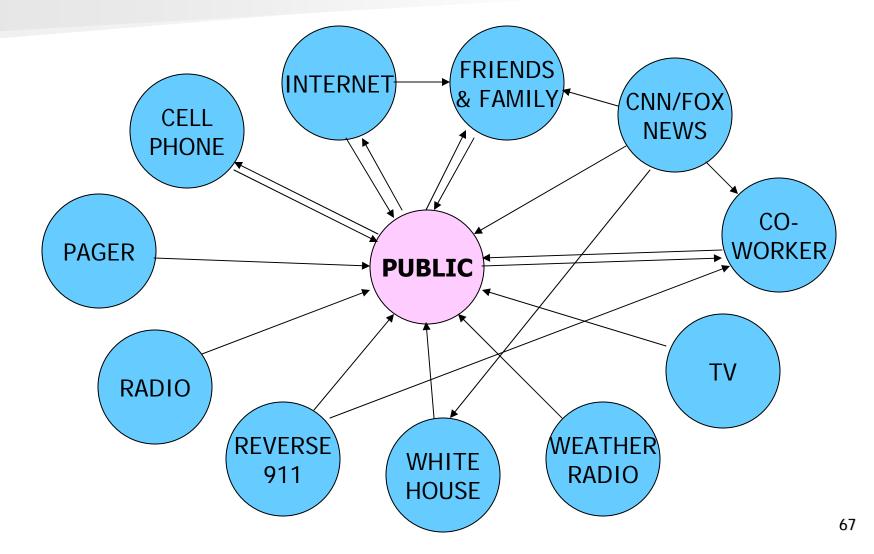
PUBLIC COMMUNICATION HAS CHANGED "SHAPE"

Public Warning Systems of Old:

- "Linear" communication systems


What's Changed:

- Innovations in communication technology
- Shifts in communication practices


Requires Warning Systems Change to:

- "Non-linear" communication systems
- Here's What it Looks Like....

<u>YESTERDAY</u>: "LINEAR" PUBLIC WARNINGS

<u>TODAY</u>: EVERYONE'S WARNING EVERYONE ELSE

WARNING SYSTEM PREPAREDNESS

Yesterday....Prepare for:

- Emergency alert system messages
- Press briefings at a joint information center
- Fire fighter's messages in buildings

Today....Be Able to:

 Manage a complex public conversation in which everyone is giving/getting information to/from everyone else

ONE THING HASN'T CHANGED

Public's Need for Warnings that are:

- CLEAR (simply worded)
- SPECIFIC (precise and non-ambiguous)
- ACCURATE (no error)
- CERTAINTY (authoritative and confident)
- CONSISTENT (within and between messages)

About:

- WHAT (what to do)
- WHEN (when to do it)
- WHERE (who should & shouldn't do it)
- WHY (the hazard & consequences)
- WHO (who's giving the message)

That are Confirmed:

Same message heard many times

AN EXAMPLE OF BRINGING RESEARCH TO PRACTICE

Converting All the Research, Data, and Mathematics into Practice.....

TOPIC 7: WHAT'S NEEDED

MAJOR RESEARCH NEEDS

National Public Response Data Repository Meta-analysis of Existing Survey Data:

- Within & across disciplines & hazards

Studies of Public:

- Non-evacuation protective actions
- Response in large urban areas
- Response to no notice/short notice events
- Exploration of variation in mobilization times
- Ending events/all clears
- Evacuation vs. migration vs. abandonment

Penetration of New Warning Technologies

MAJOR APPLICATION NEEDS

Evidence-based Guidance:

- How to write effective warning messages
- Inter-organizational warning preparedness

Prototype Warning Messages

Modernize Existing Warning Systems:

- New technologies
- Societal changes since plan development

Evidence-based Behavior Assumptions in Protective Action Models

THANK YOU

dennis.mileti@colorado.edu