

Filter Testing-Performance Analysis and Performance Enhancement

Thomas E. Sutto, Ph.D.

Material Science and Technology Division,

Naval Research Laboratory

Objectives of Testing

Part 1: What to test?

Part 2: How to test it?

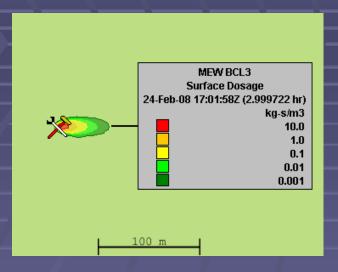
Part 3: How to translate laboratory testing to meaningful data to the user community.

Industrial Chemicals

These few selected industrial uses are only a small subset of the over 5000 chemical manufacturing and processing facilities worldwide.

What to test?

- 1. Over 5000 chemical facilities worldwide
- 2. An even greater number of distributors
- 3. TIC prioritization focused on a comprehensive risk management of what we do not know:
 - Absolute global production levels
 - Absolute global distribution amounts



Joint Project Manager for Individual Protection

Assess the actual environmental hazard

<u>Inputs:</u>

- (1) Chemical Reactivity
- (2) Decay rate fed into model
- (3) Container Regulations

Outputs:

- (1) Major By-product: Hydrogen Chloride
- (2) Release Modeled as such

How to test?

- 1. Challenge Levels
 - Scenario Modeling (For T&E purposes)
 - Vignette Modeling (For operational analyses)
- 2. Breakthrough Levels
- 3. Detection Approaches
 - Multiple species may be present
- 4. Chemical Class Analysis
- 5. Humidity Effects

Scenario Modeling

For each prioritized TIC:

- 1. Utilize DOT/UN transport regulations to determine large, moderate and asymmetric releases.
- 2. Determine maximum challenge levels at set distances
 - > (100, 500, 1000 meters)
- 3. Consider operational relevance to challenges.
 - At 100 meters from a large rail car explosion-is the threat an inhalation hazard or a blast <u>hazard?</u>

Test a range of concentrations (Scenario Driven)

- Performance curve generated vs. single data point
- Extrapolation of performance for any vignette

How to detect?

Consider NO₂:

Humidity – partial conversion to HNO₃ and HNO₂

Reactions with different impregnates:

 $ZnCl_2$ / $ZnBr_2$ + HNO_3 \rightarrow

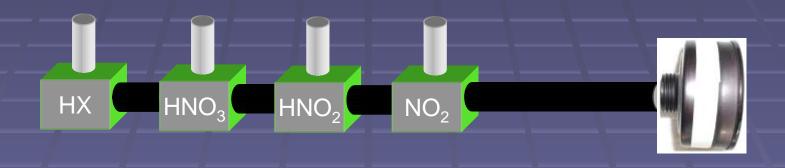
 $Zn(NO_3)_2 + HCI / HBr$

Develop capability for in-line detection of multiple species.

How to detect?

One example:

- Use of ion selective-electrochemical sensors
- Commonly available for industry
- Below lists a few of those with high sensitivity and limited cross interference


Acrylonitrile (AN)	Fluorine (F ₂)	Nitric Acid (HNO ₃)
Ammonia (NH ₃)	Formaldehyde	Nitric Oxide (NO)
Arsine (AsH ₃)	Hydrazine (N ₂ H ₄)	Nitrogen Dioxide
Benzene (C ₂ H ₆)	Hydrogen Bromide	N ₂ O
Bromine (Br ₂)	Hydrogen Chloride	Ozone (O ₃)
Butadiene (C ₄ H ₆)	Hydrogen Cyanide	Phosgene (COCI ₂)
Carbon Monoxide	Hydrogen Fluoride	Phosphine (Ph ₃)
Chlorine (Cl ₂)	Hydrogen Sulfide	Styrene
Cyclohexane	MEK (CH ₃ COC ₂ H ₅)	Sulfur Dioxide
Ethylene Oxide	Methyl Bromide	Vinyl Chloride

Simple t-cell detection set-up

Class Based Analysis

Dual Use of a chemically based Class Analysis

Risk mitigation of the unknown absolute scoring of a chemical's presence globally.

Class based analysis to assess filter performance against other related chemicals not tested.

Joint Project Manager for Individual Protection

Chemical Classes in Prioritization

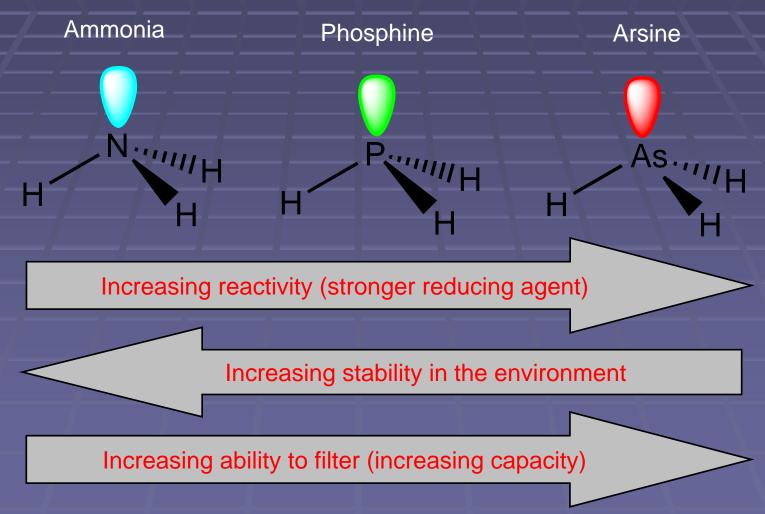
Oxidizers-includes "acid gases", and "acid forming gases" such as chlorine or fluorine.

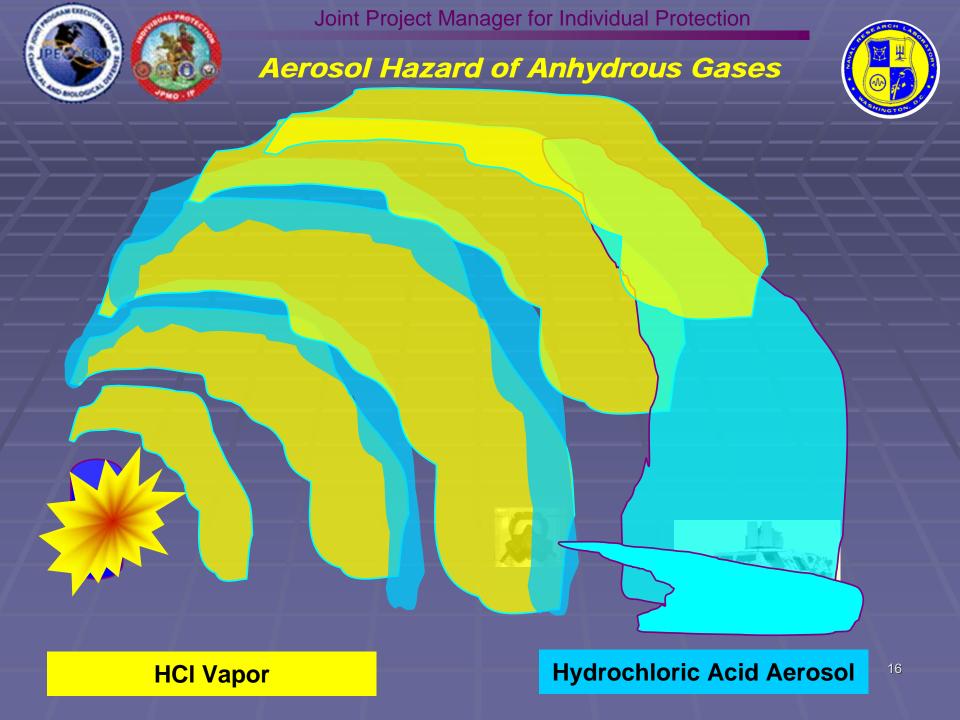
Reducers-includes ammonia and the other hydrides, as well as the hydrazines and amines.

Lachrymators- self-polymerizing "tear causing chemicals" → acrylonitrile, acrolein, allyl alcohol, methyl isocyanate and phosgene.

Volatile Organics- simple, volatile solvents such as carbon disulfide or carbon tetrachloride.

Pest/Herbicide-called due to toxicity, stability and current/past global distribution


From initial ranking, select those with the highest scores in each Class to ensure that all classes are represented.



Humidity Effects and Anhydrous Gases

Anhydrous gases present a two-fold challenge:

- 1. Upon release in the environment-conversion to an aerosol hazard
 - HCI gas to aerosolized hydrochloric acid
 - HBr gas to aerosolized hydrobromic acid
 - NH₃ gas to aerosolized ammonium hydroxide
- 2. Second hazard occurs behind this expanding aerosol hazard-a zero humidity challenge

Utilizing Filter Performance data for Operational Assessments

Based upon performance curve data:

Estimate operational time at IDLH values or AEGL-3 values

Based upon scenario modeling and performance curve data

Estimate operational time at specific distances for large, moderate and asymmetric types of releases.

Conclusions

- What to test based on a comprehensive risk mitigation strategy
- 2. How to test-lessons learned from previous T&E as well as fundamental chemistry
- 3. Simple, low cost approaches to breakthrough detection
- 4. Two fold use of Class Based Analysis
 - Risk mitigation during prioritization
 - Performance assessment during T&E and operational analysis
- 5. Humidity effects-Test at the most challenging (zero humidity?)
- 6. Utilize performance curve data to translate laboratory test data to operationally relevant filter performance.