

S&T Stakeholders Conference

CHEMICAL DETECTION PROGRAM

Donald A. Bansleben, Ph.D. Program Manager Chemical and Biological Division Science and Technology Directorate

PARTNERING FOR A SAFER NATION

OUTLINE

- Introduction
- Chemical Detection Projects
 - ARFCAM / LACIS
 - Integrated CBRE Detection Demo
 - Low Vapor Pressure Chemicals
- Summary

DHS S&T Chemical Detection Program

OBJECTIVES

 Develop chemical detection systems for facility monitoring, deployment to special events, and first responder usage.

Goals

- Ability to detect and identify a wide range of chemical substances of concern for civilian defense against acts of terrorism
- Ultra-low false negative and false positive response rates
- Form partnerships with the private sector to develop detection systems that can be acquired by localities under various homeland security grants programs

Autonomous Rapid Facility Chemical Agent Monitor (ARFCAM)

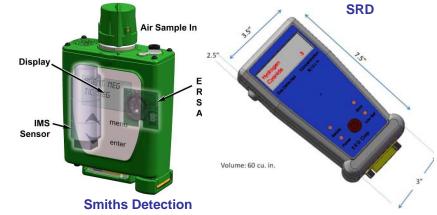
Objective: Develop, demonstrate, and commercialize a networked capability to continuously and autonomously detect and identify the presence of a broad range of toxic chemical hazards for facility protection.

Challenges:

- <u>Selectivity</u> for target agents and against common backgrounds
- Wide dynamic range: IDLH to PEL
- Ultra-low false alarm rates
- Varying temperatures and RHs
- Speed: target <1 min (IDLH)/15 min (PEL)
- System cost: \$1,000/10k units

Schedule:

- FY04: Initiated program
- FY05: Down-select for lab prototype
- FY07: Down-select for "field" prototypes
- FY08: Complete "field" prototypes
- FY09: Complete test bed trials and IT&E
- FY10: Down-select prototypes for developmental field testing (DT&E)
- FY11: Complete DT&E, transition


Lightweight Autonomous Chemical Identification System (LACIS)

Objective: Develop, demonstrate, and commercialize a networked responder capability to detect and identify a broad range of toxic chemical hazards to assess a scene for contamination and provide guidance on PPE use.

Challenges:

- Selectivity <u>for</u> target agents and <u>against</u> common backgrounds
- Wide dynamic range: IDLH to LOD
- Speed: <a> 10 min warm-up
 <a> 2 min response (IDLH & LOD)
- System cost: \$2,000/10k units

Schedule:

- FY04: Initiated program
- FY05: Down-select for lab prototypes
- FY07: Down-select for "field" prototypes
- FY08: Complete "field" prototypes
- FY09: Complete test bed trials and IT&E
- FY10: Down-select prototypes for developmental field testing
- FY11: Complete DT&E, transition

Current ARFCAM and LACIS Technologies

ARFCAM	IMS	DMS	GC	
Bruker Daltonics	✓			
Smiths – Watford	~		✓	
Hamilton Sundstrand	✓	✓		
Hamilton Sundstrand	✓	✓		
ACIS	IMS	Chemi- resistors	Metal Oxides	MS

SRD Corp			✓	
Smiths – Edgewood	✓	✓		
Purdue University				✓

IMS = Ion Mobility Spectrometry DMS = Differential Mobility Spectrometry GC = Gas Chromatography MS = Mass Spectrometry

TIC LIST - LACIS/ARFCAM Prototype Testing

TIC	IDLH (mg/m ³)*	PEL (mg/m ³)**
Acrolein	4.59	0.23
Acrylonitrile	184.47	4.34
Ammonia	208.96	34.83
Arsine	9.56	0.2
Chlorine (gas)	29	2.9
Cyanogen chloride (CK)***	50	0.6
Ethylene oxide	1441.41	1.8
Formaldehyde	24.56	0.92
Hydrochloric acid	74.5	7
Hydrogen cyanide (AC)	55.27	11.05
Phosgene	8.09	0.4
Sulfur dioxide	262	13

Documentation for Concentrations:

* NIOSH Chemical Listing and Documentation of Revised IDLH Values

** NIOSH Pocket Guide to Chemical Hazards

*** Extrapolated and estimated from AC data

CWA / Interferents - LACIS/ARFCAM Prototype Testing

CWA	IDLH (mg/m²)	PEL (mg/m²)
Lewisite (L)	0.23*	0.003
Sarin (GB)	0.1	3x10⁻⁵
Sulfur Mustard (HD)	0.7	0.0004
Tabun (GA)	0.1	3x10⁻⁵
VX (Nerve Agent)	0.003	1x10 ⁻⁶

* AEGL 2 value at 30 min (www.epa.gov/oppt/aegl/chemlist.htm)

LACIS Phase II Interferents

Aqueous Film-Forming Foam (AFFF)

Diesel Exhaust

Gasoline (87 octane) exhaust

Second Hand Smoke

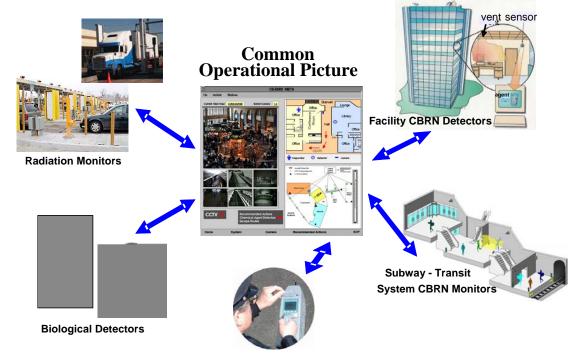
ARFCAM Phase II Interferents

Clorox Bleach

Diesel Exhaust

Paint Fumes (Glidden America's Finest Interior Latex Flat Wall Paint - HM1224 White)

Windex


Zep Perimeter Floor Stripper

Integrated CBRE Detection System

Objective:

An architecture that integrates reporting from disparate chemical, biological, radiological, and explosive detection and collection systems. This 'system-ofsystems' provides timely CBRN(E) detection, identification, and assessment of the threat, and enables response actions by appropriate local, state and federal officials.

Chemical Detectors

- FY07 Architecture Study
- FY08 Pilot chem / bio system in two cities
- FY09 Integrate rad / exp systems in large-scale demo
- FY10 Complete technical data package, commercialize

Low Vapor Pressure Chemical Detector

Objective:

 Stand-off surface detection of persistent chemical threat substances having low vapor pressures (<10⁻⁴ Torr)

Advantages:

- UV-Raman for stand-off detection no need to collect/transfer analyte to spectrometer for detection and identification
- Leverages extensive DoD development
 - JCSD-ACTD (vehicle mounted)
 - LISA Inspector (cart mounted)
- No consumables

Backpack < 18 kg LISA Manportable: UV-Raman Sensor

Challenges:

- Miniaturization
- Time to scan large surface areas when contaminant location is unknown
- Fluorescent surfaces

Schedule:

- FY06 Project Initiation
- FY07 Prototype developed
- FY09 Engineering Development Model
- FY10 DT&E

Homeland Security