

S&T Stakeholders Conference

Aircraft Blast Mitigation

Herman Rediess, Ph.D. Transition Program Executive Explosives Division Science and Technology Directorate

PARTNERING FOR A SAFER NATION

Problem Definition

Blast mitigation uses advanced structural materials and design to prevent an internal blast from resulting in catastrophic loss of the aircraft and its passengers

- Explosives detection increasingly difficult and/or expensive as threat mass decreases
- Aircraft hardening weight and costs increases as threat mass increases
- Combination of detection and hardening may cost-effective "system solution"

Threat Mass

Research Objectives

- Determine and Demonstrate the Feasibility of Blast Mitigation Technologies to Enhance the Survivability of Civil Aircraft
- Key requirements for commercial transport application -
 - Security threat mass protection requirements, areas of protection
 - Operational/End-User minimize weight and life-cycle cost impact (capital investment, installation, maintenance, etc.)
 - Airworthiness –material and installation must meet FAA airworthiness certification regulations (flammability and other safety issues).

Aircraft Hardening Research Approach

- Aircraft blast mitigation areas:
 - Overhead bins and bin liners
 - Passenger cabin liners
 - Cargo hold liners
 - Hardened luggage containers
 - Least risk bomb location

- Address specific threat weights determined by limits of Explosives Detection Systems (EDS) performance coupled with aircraft survivability
- Evaluate basic characteristics and acceptability of materials before developing prototypes (material strength, flammability, adaptability for aircraft installations, etc.)
- Address concepts of operations, implementation approach, and airworthiness/ certification issues with TSA, FAA and industry (Boeing and Airbus)
- Perform cost/benefit analysis of ballast mitigation technologies and installation

Hardened Sidewall Panel Tests B-737, March 2008

- Panel Development:
 - Boeing Phantom Works (BPW) in cooperation with Boeing Commercial Aircraft (BCA), Aircraft Interiors Group
 - Panel material was successful in prior tests for FAA flammability conformance, blast fragmentation/ shockholing resistance, and blast resistance test
- Panel Design:
 - Kevlar/Resin composite material composition: Kevlar 745 plain weave fabric, K29, 3000D, 13.2 oz/sqyd, Cytech Cycom 2282 resin.
 - Panel dimensions 30" wide x 52" high x 0.4" thick
 - Panel weight 19 pounds
- Installation Location:
 - Aircraft body stations 480R and 500R
 - Installed using existing aircraft sidewall panel shock mounts

Standard Panel (L) BPW Panel (R) 5

B-737 BPW Sidewall Panel Un-pressurized Test, March 2008

B-737 Standard Panel Un-pressurized Comparison Test, March 2008

Hardened Sidewall Panel Tests

B-737, March 2008

- Explosive Threat Scenario:
 - Military C4, molded spherical shape
 - Threat encased in representative passenger carry-on luggage
- Test Results:
 - With BPW liner: 26" longitudinal crack below window frame, and window pane intact. No failed stringers or frames
 - Probably not catastrophic
 - Without BPW liner: 33"H x 26"W breach to aircraft fuselage skin, multiple cracked stringers and cracked frame
 - Likely catastrophic at cruise altitude pressurization

BPW Liner, Post-test (Interior View)

Standard Liner, Post-test (Exterior View) 8

Summary of Blast Mitigation Tests

- 90 explosive mitigation tests conducted for commercial aircraft structures
 - 18 Tests on Narrow-Body Aircraft
 - 13 in passenger cabin
 - 6 bin insert tests
 - 2 hardened bin tests
 - 3 hardened liner tests
 - 2 side wall panel tests
 - 5 in cargo hold
 - 1 hardened container
 - 4 hardened liner test
 - 72 Tests on Wide-Body Aircraft
 - 5 in passenger cabin
 - 1 bin insert test
 - 1 hardened bin test
 - 3 hardened sidewall panel tests
 - 67 in cargo hold (all hardened container)
- Over 300 Supporting Data Tests
 - Includes determining suppressive and equivalence properties of passenger luggage and air cargo contents on explosive effects

Blast Mitigation Results and Status

- Accomplishments:
 - Fielded a practical solution for wide-body cargo holds (HULD)
 - TSA conducting pilot flight test program
 - Weight and cost are still issues
 - Demonstrated capability of hardened bins and liners for specified threat scenarios
 - Materials and design meet FAA airworthiness requirements
 - Weight and cost are still issues
 - Completed cost-benefit analysis on selected blast mitigation technologies to aid TSA in policy decisions
 - HULD, cargo liner, and hardened overhead bin
- What is Needed:
 - Practical blast mitigation solutions for narrow-body aircraft cargo holds
 - Assess effectiveness of blast mitigation technologies against other explosives
 - Low-weight/low-cost hardening solutions for all aircraft applications
 - Modeling and simulation capability for blast mitigation studies
 - New materials and explosives
 - Broad range of existing and emerging transports
 - Address passenger surface conveyance blast mitigation

Homeland Security