

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

The Evolution of Artillery for Increased Effectiveness

June 10-11, 2008

Evolution of Artillery for Increased Effectiveness

Presented at:

Armaments Technology Firepower Forum

Contributors:

Fred Scerbo (L-3), Steve Floroff (ARDEC), Adam Scanlan (ARDEC)

Presented by:

Dominick DeMella

Chief NLOS Cannon Artillery Division

ARDEC, Picatinny Arsenal

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- To destroy, neutralize or suppress the enemy by cannon, rocket or missile fire ensuring the integration of all supporting fires in a combined arms operation
- Most lethal form of land based armament often referred to as:
 - "King of Battle"
 - "God of War"
 - "Ultima Ratio Regum"
 - "The Final Argument of Kings"
 - "God Fights on The Side With the Best Artillery"
 - "I do not need to tell you who won the war, you know, Artillery did."

To provide an overview of historical highlights in the Development / Evolution of artillery and provide a snap shot of future trends

Late 19th Century

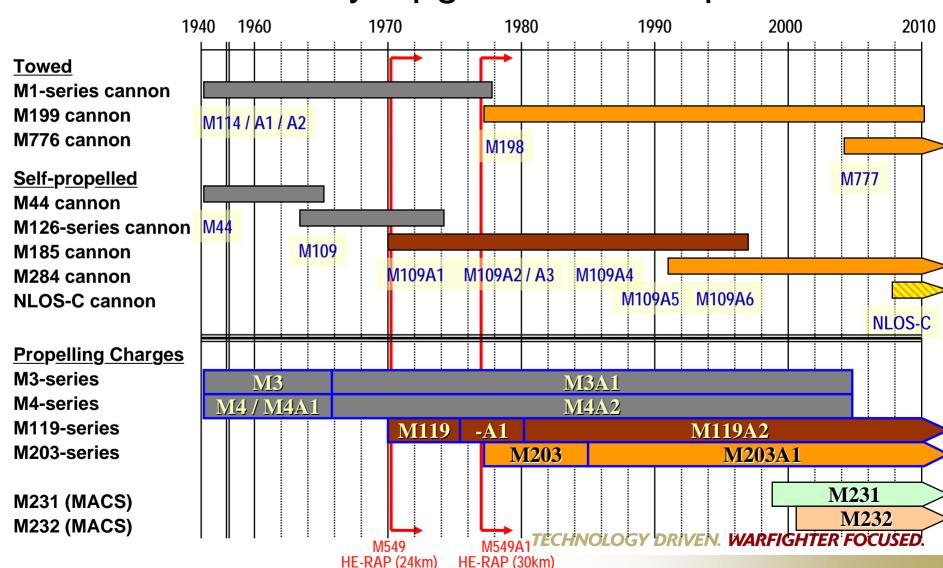
1897 French 75 Fielded

- Hydraulic Recoil System
- Effective Breech loading (Nordenfeld Breech)
- Modern Sight
- Self contained firing mechanism
- Fixed Shell + Cartridge Ammunition

Evolution of Propelling Charges

- Black Powder
 - Low Power
 - Smoked
- Gun Cotton (Nitrocellulose)
 - More Powerful than Black Powder
 - Smokeless
 - Unstable
 - Burns Hot
- Double Based Powders
 - Nitrocellulose + Nitroglycerin
 - More Powerful than Gun Cotton
 - Smokeless
 - More stable than Gun Cotton
- Triple Based Powders
 - Nitrocellulose
 - Nitroglycerin
 - Nitroguanodine

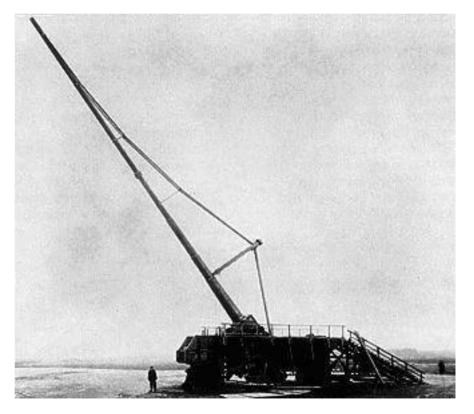
M67 Propelling Charge


M200 Propelling Charge

Propellant Summary Chart

155mm Artillery Upgrades - Infrequent

Late 19th Century


A Shift from smaller lighter mobile pieces that stayed with infantry to Larger Guns for Indirect Fire

French Cyclone

German Artillery

Paris Gun

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

World War I

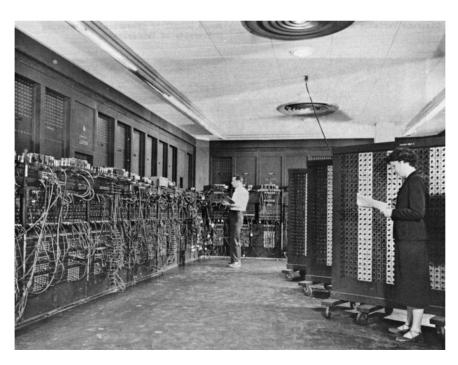
- Predicted Fire Methods Developed
- Over 60% of Combat Casualties attributed to Artillery
- Expenditure of 1 billion rounds fired by all sides
 - Battle of Verdun 1916
 - 1,000 guns
 - 16 million rounds fired over 6 months
 - 200 million rounds produced for French 75
- French 75
 - Range: 6.9 km
 - 12 lb or 16 lb shrapnel round w/290 lead balls
- Smoke round first deployed
- Long Range Harassment Guns developed
 - Paris Gun
 - 75 mile range

Battle of Verdun

Watiliah Washia & Cerhadin Wespe

Self Propelled Guns come into widespread use

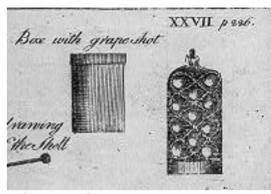
- Mark 1 Gun Carrier
- 105mm M7 "Priest"
- British Sexton
- 105mm German Wespe
- Soviet Katyusha
 - Self propelled Multiple launch rocket system
- US MLRS and 155mm Paladin


Dec 1944 US Artillery XMAS Present

- First Radar Proximity Fuze
 - Increased Effectiveness against personnel targets

- <u>E</u>lectronic <u>Numerical Integrator And Computer</u>
- Computer developed for Artillery Firing Tables
- Trajectory tables to predict Projectile Flight
- 3D second order differential equations of motion performed manually

Artillery Developments


- Increased Mobility
- Longer Ranges
- Increased Firing Rates
- Increased Precision
- Increased Lethality
- Modern Battery: 6 Guns
 - 43 kg (~95 lbs) projectile @ 4 rounds per minute for 4 minutes yields.....
 - Over 1 metric ton of ordnance delivered per minute
- Desert Storm Massed Artillery Fires
 - 11 Artillery Battalions
 - Devastating Effects
 - Broke Enemy's "will to fight"

Artillery Ammunition

- Cannon Ball
 - Kinetic energy
 - Breach fortifications
 - Slice through Men & Horses
- Grape Shot
 - Smaller balls separating at Muzzle

Grape Shot

- Chain Shot
 - Cannon balls joined by chain
- 1803 British General Henry Shrapnel
 - Balls blown from shell by burster charge
- Mid 1800's
 - Cylindrical-Conical projectile replaces cannon ball
 - Copper driving bands engage rifling in guns for spin stabilization and thus longer range

Artillery Ammunition cont.

• 1950's

- BRL (Now ARL)
- Scientific & Systematic approach to analysis of wound ballistics
- Fragment Mass striking velocity
- Random Fragmentation munitions
 - 155mm M107
 - Large fragments reduced velocity, limited area of coverage
- Controlled fragmentation material improvements
 - High-Fragmenting Steel
 - Smaller high velocity fragments, increased total number of fragments, larger lethal area

Typical HE

- Overkill on immediate area of detonation lacking large area coverage
- Sub-missiling Principle
 - Increased lethality through spreading of munitions

- ICM (Improved Conventional Munitions)
- First Generation ICM's combined submissiling with controlled fragmentation and ground burst

105mm M413
 18 Ground burst

– 105mm M444 18 Airburst

155mm M449 60 Airburst

-8 inch M404 104 Airburst

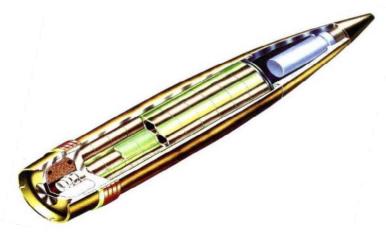
Artillery Effectiveness

<u>155mm</u>	Cargo	% Casualty		
M107	TNT	4.9		
M107	Comp B	7.9		
M449	60 sub-munitions	31.9		

Advanced ICM Artillery or DPICM

155mm M483A1
 88 dual purpose sub-missiles

8 inch M509
 195 dual purpose sub-missiles


155mm M864 base bleed
 72 dual purpose sub-missiles

M483

M864

Combat Comparative Effectiveness (Vietnam)

Conventional	105mm	155mm	8 inch
Rds Expended	7,079	3,465	149
Rds / kill	31.6	13.6	16.6

ICM	105mm	155mm	8 inch
Rds Expended	1,121	772	153
Rds / kill	2	1.7	8.0

Live Fire Demonstration Effectiveness Comparison

	<u> </u>	HITS						
	Total Rounds					One Jeep	Total Hits	
ICM 155mm, M483	145	47	69	45	5	7	173	
M107: 155mm	432	2	4	2	0	0	8	

Delivery Accuracy As a Function of Range

Projectile	Range (km)	CEP (m)
M795	20	119
M864	20	96
M864 (BB)	28	186
M549 (RAP)	30	267

- Delivery Error increases with Range
- Solutions to overcome delivery error
 - Smart or Precision Projectiles

Copperhead

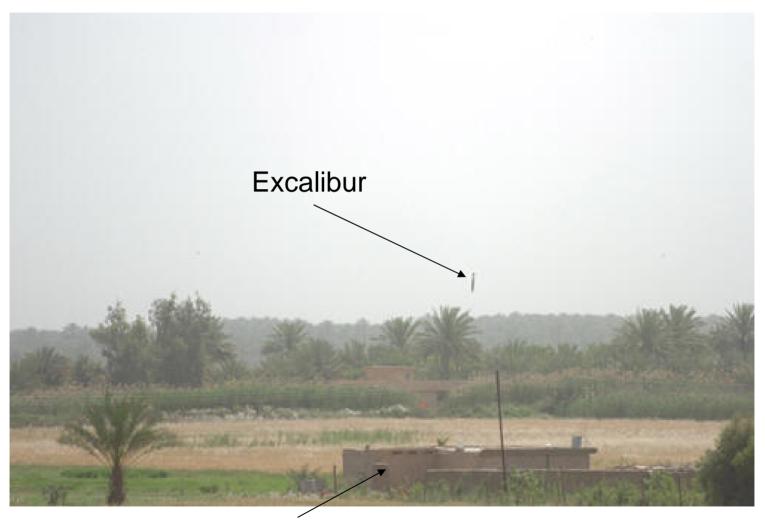
First Cannon launched Precision round developed by U.S. Army

- 16 km Range
- Ground Laser locator designator

- Initially developed for 8 inch Gun
 - Shifted to 155mm in 1980's
 - Sense And Destroy ARMor submunition

- Combat Proven 2003
 Invasion of Iraq
 - 108 Rounds Fired
 - 48 vehicle kills
- Employs:
 - Infrared telescope
 - Millimeter wave Radar

- A Joint United States / Kingdom of Sweden Program
- Fin stabilized, gliding airframe uses GPS & Inertial Navigation System Guidance
- Accuracy of Less Than 10M CEP
- Minimizes Collateral Damage
- Employment Flexibility Danger Close Fire Missions
- High Impact Angle
 - Ideal For Urban Terrain
 - Optimal Effects
- Increased Effects With Fewer Rounds
- Status
 - Initial Capability Fielded in 2007



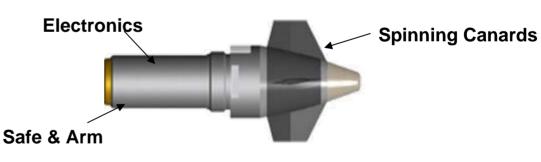
Makes Cannon Artillery Relevant in today's Urban Conflicts!

Excalibur

Target

The Next Generation of Artillery

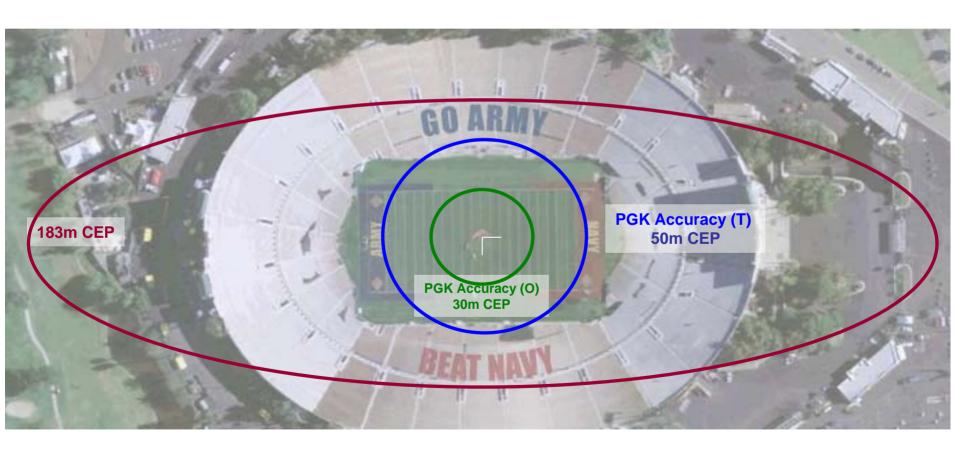
- Precision Guidance Kit (PGK)
- Infrared Illumination Round (XM1064/6)
- Very Affordable Precision Projectile (VAPP)
 - Common Smart Submunition (CSS)
 - Proximity Initiated Submunition (PRAXIS)
 - Extended Range Artillery (ERA XM1113)
 - Hybrid Propellant (XM350)
 - Selectable Technology for Adaptive Response (STAR)
 - Electromagnetic Gun System



PGK (XM1156)

- Fits in standard 155mm High Explosive artillery projectile fuze wells (deep intrusion)
- GPS guidance (incorporates SAASM)
- 20 Year Storage Life (no battery)
- Proximity & Point Detonating Fuzing

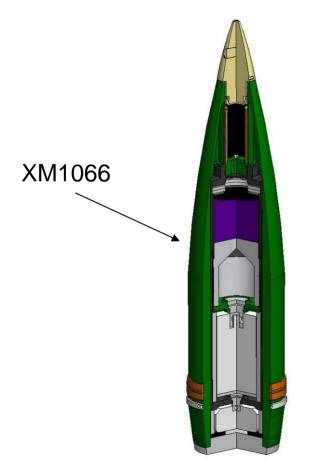
2007 Tech Demo Firing



PGK Delivery Accuracy

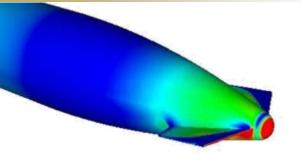
CEP Comparison - Guided vs. Unguided M109A6 - Paladin - 27km

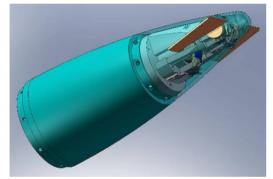
M109A6 - Paladin - 27km 155mm (HE) M549A1 with 1 mil Aiming Error at Low Angle



IR Illumination

- •IR Illumination provides the user with battlefield illumination in the infrared wavelength
- Allows user to witness movements of enemy in a dark battlefield

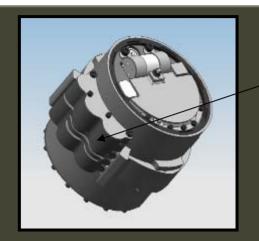




Very Affordable Precision Projectile (VAPP)

Description

 Design and demonstration of 105mm precision artillery to focus on affordability and performance


Performance Highlights

- GPS guidance augmented by Magnetometer
- \$10,000 AUPP objective
- Range objective 24 km
- ≤10m CEP
- Greater lethality than legacy 105mm

Common Smart Submunition (CSS)

Before deploying Samara Wing and sensor suite

After deploying Samara Wing and sensor suite

Payoff

- Enables single round-multiple kill capability.
- Multi-platform applicability across projectiles/missiles/ mortars/UAVs.
- On board target discrimination capability.
- Reduced logistics footprint.
- Clean Battlefield

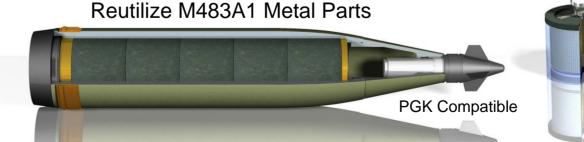
Mission Objectives

 Develop and demonstrate the next generation target discriminating submunition (school bus vs. tank)

Improvements to meet ICM current requirements

- Near Surface bursting
- Warhead optimization for Antipersonnel capability
- •Weapon integration carrier for CSS

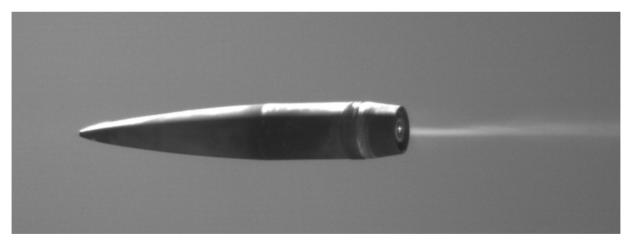
TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.


PRAXIS: Next Generation ICM

PRoXimity Initiated Submunition

- Extreme Reliability Tri-Mode Proximity Fuze (0.99999)
 - Proximity 0.97
 - Impact 0.98
 - Time 0.98
- Goal-99 Proximity/Impact/Time reliabilities at 0.99 provides 1 in a million UXO
- Pre-Formed Fragmentation (PFF) Dual Sized Tungsten Ball Matrix for anti-personnel and light materiel effects
- Fragmenting Steel Casing for Anti-Materiel Effects
- IM Explosive

5 Full Bore Submunitions


Patent Pending

XM1113 Extended Range Artillery

- Reach NLOS-C ORD requirement of 30 km (Threshold)
- Exceeds 40 km range in current 39 Cal systems
- Low cost solution based on proven technologies

XM1113 Range Demo 2007

XM350 Hybrid Propellant

- Goal: To replace M67 and M200 with a single propelling charge
- Consists of 6 Semi-fixed bag increments marked 1-6
- Combined the 6 bags create 1 zoned charge

XM350 Hybrid vs. M200

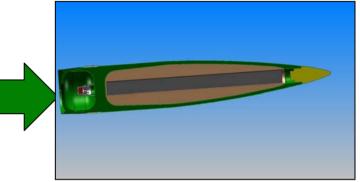
— XM350 Hybrid — Breech Pressure Zone 8

Scalable Technology for Adaptive Response (STAR)

Replace current DPICM cargo

M483

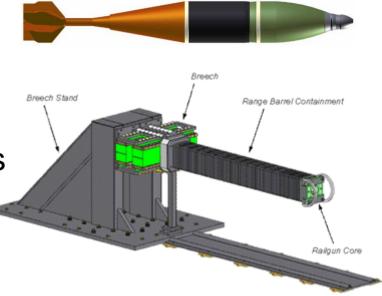
M913


- Description: Develop enhanced capabilities for Artillery
 - Scaleable Output/Controlled Lethal Effects
 - Hardened for structures
 - Lower fire mission costs
 - Broader target set using adaptive response
 - Reduced collateral damage
- Warheads for:
 - 155mm: M483A1 & M795
 - 105mm: M913
- When Available: 3rd QTR FY11
- Metrics: Adaptive lethality (increase X% vs. materiel targets) and reduce collateral damage by 25% (min)

Technical Approach for STAR

Develop and integrate new technologies

- Novel Energetics (Explosives & Propulsion)
- Combined Effects & Scaleable Effects Explosives
- Enhanced Fragmentation
- Advanced Fuzing
- Precision Guidance Kits


The EM Mortar Program Goals

Objective:

•To evaluate and demonstrate ElectroMagnetic (EM) launch technology as related to the missions of an advanced mortar weapon for the Future Combat Systems (FCS).

Goals:

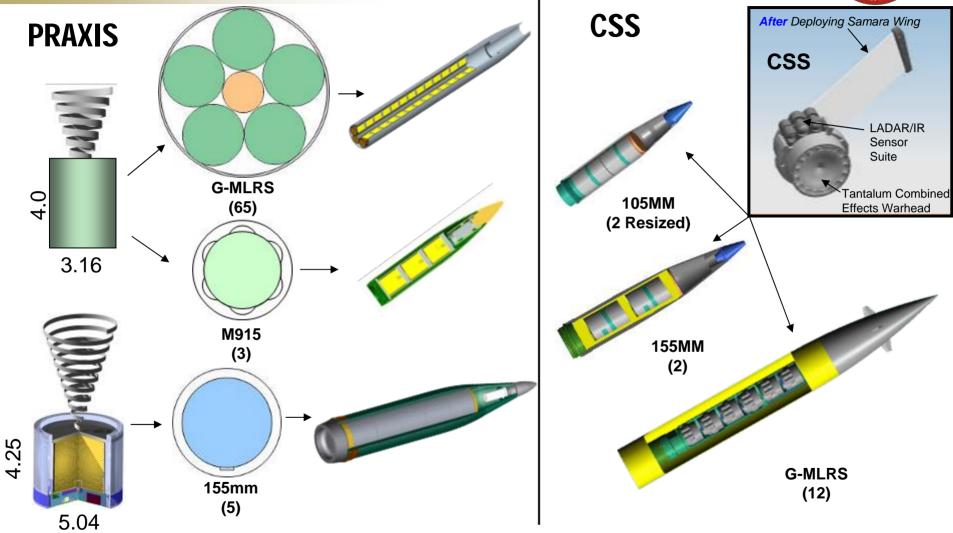
 Design and demonstrate EM guns (coilgun and railgun) capable of firing modified 120 mm mortar rounds at velocities up to 420 m/s.

RDECOM Tribute to Artillery

- NLOS Non Line of Site
- MLRS Multiple Launch Rocket System
- HE High Explosive
- ICM Improved Conventional Munition
- TNT Tri-Nitro Toluene
- DPICM Dual Purpose Improved Conventional Munition
- CEP Circular Error Probability
- BB Base Bleed
- RAP Rocket Assist Projectile
- HOB Height of Burst
- SAASM Selective Availability Anti-Spoofing Module
- CFD Computational Fluid Dynamics
- UXO Unexploded Ordnance

Dominick DeMella

Phone: (973) 724 – 4422


E-mail: <u>Dominick.demella@us.army.mil</u>

Artillery and Missile Applications

