The Role of Chaos and Complexity in Systems Development

Robert J. Monson, Ph.D. Lockheed Martin MS2 Tactical Systems Eagan, Minnesota

Chaos and Complexity The Bak Sandpile model Defines the behavior of a simple system Representative of many physical and organizational systems Provides insight into an appropriate method to plan and manage systems

Why do we care?

How does the model work?
Complex Systems are frequently governed by simple rules

 Add 1 item randomly to any pile
 If any pile >= 4 items, distribute 4 items

Typical Results

The Sandpile Model Examples utilizing a 3 X 3 matrix Previous example Larger examples do not exhibit such a dramatic edge effect 25 X 25 model used most commonly Use simulation to provide behavior information

- yellow box -- one particle
- green box -- two particles
- blue box -- three particles
- red box -- four particles, critical (unstable) state

3 X 3 matrix 100 points

25 X 25 matrix, 2000 pts

Some Examples Physical Models Traffic Patterns Complex Interactions in **Organizational Systems /** Systems Development

Physical Models

Fish Schooling Oslo Experiment Rice grains between sheets of glass Avalanches monitored

Traffic Patterns

Microsimulation of road traffic with a time-continuous model

Traffic Patterns

Microsimulation of road traffic with a time-continuous model

Organizational Systems

- Predictability of complex systems is effective in a generalized sense
 - I cannot know when and where earthquakes will occur, but I can know approximately how many to expect and typical magnitudes
 - Overall I will have a good idea what energy will be imparted by the earthquakes
 - This is good enough to know how to design structures for the region
- Systems Design requires predictability in order to achieve plans and projections

Systems Design

- To increase probability of success, we need to dramatically increase operational predictability
- Scheduling work with a consideration for 75% efficiency provides this added predictability
 - Since we do not know what specific disturbances will occur
 - We do not know when they will occur or what magnitude they will be
 - But we know that on average that 25% of our time will be consumed by them

Conclusions

- A complex system will organize itself into a critical (or unstable) state
- We know that a certain amount of disturbances and resultant avalanches within our Systems Development is unavoidable
- We don't know specifics, but we know 25% of our time will be consumed by interdependencies in the system
- We can increase our probability of success by planning personnel at 75% capacity, which should be treated as our maximum productivity
- This purposeful detuning of the system results in fewer catastrophes with less catastrophic Systems Development results

References

- Bak, Per (1999) How Nature Works. Springer-Verlag Telos. 1st edition.
- http://www.cmth.bnl.gov/~maslov/soc.htm
- <u>http://vwisb7.vkw.tu-</u> <u>dresden.de/~treiber/MicroApplet/</u>
- www.santafe.edu/~ole/oslo.html
- www.mindware.com