
UNCLASSIFIED

UNCLASSIFIED

Domain Modeling
Roadmap to Convergence

Nathaniel Horner Steve Topper

22 October 2008

"You got to be careful if you don't know
where you're going, because you might not
get there."

- Yogi Berra

UNCLASSIFIEDslide 2

UNCLASSIFIED

Overview
Introduction

Conceptual Modeling Process Overview

Domain Modeling as the Foundation of the Conceptual Model

Domain Modeling Application Across the Project
Analysis
M&S, Software Engineering
Systems Engineering / Architecting
Business Processes

Domain Modeling “Goods and Others”

UNCLASSIFIEDslide 3

UNCLASSIFIED

Why are we here?
Initial activities on a modeling and simulation (M&S) project for a
large, complex, integrated system attempted:

To develop generic DoDAF artifacts,
To link these artifacts more closely to developed models,
To provide a basis for new M&S development across a wide
community of stakeholders.

Issues
Legacy tool challenges for complex systems-of-systems analysis
(configuration/preparation time, fidelity, and interoperability).
Lack of standardized foundation.
Traditional architectures often difficult to assess using M&S
(lacked underlying referential structure).
Activities difficult to accurately plan and estimate.

How can we fix it?

UNCLASSIFIEDslide 4

UNCLASSIFIED

Introduction
Problem Domain:

The real-world things and
concepts related to the
problem that the system
is being designed to
solve.

Domain Modeling:
The task of discovering
“objects” (classes)
representing things and
concepts, and the
relationships between
them.

[Rosenberg and Scott 2001]

Problem Statement:
Develop efficient techniques to

support complex system analysis

Given:
Complex systems, lots of

components, subsystems,
sophisticated behaviors,
networks, information
processing, collaboration

Organizations involved in design &
development of these systems

Analysis, requirements,
architecture, systems
engineering, software
engineering, testing, operations.

Approach:
Understand the problem Domain
and progress from there…

10/22 JHU/APL Domain Modeling Horner/Topper 4/30

UNCLASSIFIEDslide 5

UNCLASSIFIED

Conceptual Modeling Process
Based on standard software and
systems engineering
processes.*
Translates informal, generalized
information from disparate
sources into formal system
models.
Maintains focus on
understanding and
standardizing the problem
space before moving on to the
solution.
Allows iteration and feedback
until it’s “right.”
Produces documentation
allowing traceability throughout
the process.

* Though significantly changed, this conceptual modeling process is informed by ICONIX, a
software engineering process falling between RUP and XP with respect to rigor and flexibility.
ICONIX is documented in Rosenberg and Stephens [2007].

UNCLASSIFIEDslide 6

UNCLASSIFIED

Conceptual Modeling Importance

“Conceptual modeling is almost certainly the most
important aspect of the simulation modeling process . .
. . A well-designed model significantly enhances the
possibility that a simulation will meet its objectives
within the required time-scale. What sets truly
successful modelers apart is their effectiveness in
conceptual modeling.”

[Robinson 2004]

The first, crucial step in conceptual
modeling is Domain Modeling.

UNCLASSIFIEDslide 7

UNCLASSIFIED

Domain Model
What it is: A “10,000-foot view,” a live “project glossary,” a simplified class

diagram.

How to do it:
Create list of candidate domain entities by extracting nouns from input
documents.
Review list, standardizing and defining terms.
Deploy entities in a simplified class diagram (no attributes or operations)
and draw important relationships (generalization, composition/aggregation).
Iterate as needed with all stakeholder groups and revisit throughout the
project.

What it is for:
Answers the question, “What makes up the system and its environment?”
Defines the scope of the project, standardizes terms.
Provides foundation for static structural model.

UNCLASSIFIEDslide 8

UNCLASSIFIED

Domain Model Input
What it is: Known information about the system and its environment.

How to do it:
Informal requirements descriptions and mission descriptions.

NOT detailed, formal system requirements.
Generalized statements about system and what it does.

CONOPS.
Existing documentation.
Stakeholder brainstorming sessions.

What it is for: Nouns extracted from these documents form a list of candidate
domain entities.

UNCLASSIFIEDslide 9

UNCLASSIFIED

Domain Model (Example)
High Level Domain covers environment,
mission and systems-of-systems
representations

Expands to increasingly detailed system
representations

UNCLASSIFIEDslide 10

UNCLASSIFIED

Why Use Domain Modeling?
Standardize and define the problem space.

Use as a project glossary/naming convention.
Focus on real-world (problem domain) objects.

Document domain structure.
Organize around key problem domain factors.
Encapsulate (sub) systems.
Simplify and/or standardize interfaces.

Identify systems and their interrelationships.
Enable analysis of the concepts.

Provide critical foundation for follow-on conceptual modeling
artifacts (e.g., use cases, activity models, state diagrams, M&S
software design, etc.).

Complex systems-of-systems require a design approach that
formalizes the mapping between behaviors and entities and remains

flexible and resilient to change.

UNCLASSIFIEDslide 11

UNCLASSIFIED

Domain Modeling and Other Project Tasks

The domain model is critical to the conceptual modeling
tasks, through which it has important application across
analysis and development projects:

Research, Development, and Analysis
M&S, Software Engineering
Systems Engineering, Architecture
Business Processes, Project Management

UNCLASSIFIEDslide 12

UNCLASSIFIED

Why It Matters: Research, Development & Analysis

Establishes framework for factor identification and selection
including:

Structure: defines systems and capabilities.
Behavior: defines functional processes.

Defines the domain entities each group must focus on to achieve
their objectives.

There will be overlap identified – requiring coordination.
Provides the terminology and factors for development of:

Tests and experiments including specification of alternatives and
trades, and scenario development requirements.
System functions which emerge from domain entities: methods,
attributes, and interfaces.

Supports analysis at different levels of abstraction/fidelity without
changing the underlying model/architecture.

UNCLASSIFIEDslide 13

UNCLASSIFIED

Analysis Example
Analysis factors are selected using
domain entities and derived artifacts.
Selection is independent of simulation
tool.

Simulation
implementation
is defined by the
class structure
based on the

domain model.

0.3 0.5 0.7 0.3 0.5 0.7 0.3 0.5 0.7

10 60 60 55 61 52 53 56 61 64

20 58 66 80 69 80 65 75 69 76

30 73 62 61 74 73 71 73 75 75

Targets
Detected

Comm Throughput
0.3 0.5 0.7

Collection Capability

Ta
rg

et
 A

ct
iv

ity

Results provide assessment of the efficacy of the system
alternatives and the sensitivity of the factors on one another.

UNCLASSIFIEDslide 14

UNCLASSIFIED

Why It Matters: Model and Simulation, S/W Eng.
Helps identify where M&S software should be developed.

Represents the top level classes and associations for M&S design.
Forms a foundation for software design model (UML).
Models are derived, developed, or specified from the domain-
level superclasses.

Enables assessment of complex network-centric issues via
reusability, extensibility, and re-configurability of models.

Identifies M&S needs/requirements for potential assignment to
available tools (including legacy simulations).

i.e., once a simulation need is identified, existing tools can be
evaluated against it.

UNCLASSIFIEDslide 15

UNCLASSIFIED

M&S Example

Domain entity becomes class for model implementation.
Model parameters used to compose system representation.
Domain artifacts provide basis for evaluation of existing simulations.

Sim Framework Basic Types

Generic Model Classes

Inherited Model Classes

Metamodel ActivitiesInterpret Emit Collect Interpret (Environment)

UNCLASSIFIEDslide 16

UNCLASSIFIED

Why It Matters: Systems Engineering
Tracks overall system-of-systems development and interactions.
Provides insight into the system/subsystem alternatives.
Useful as a foundation for system architectures.
Supports requirements development/refinement.
Identifies redundant or superfluous systems/processes.
Simplifies design.
Identifies capability shortfalls.
Identifies program risks:

Technical readiness,
Interoperability challenges,
Critical technologies.

Stored in a database, which can be linked to other SE products.

UNCLASSIFIEDslide 17

UNCLASSIFIED

Systems Engineering Example

Requirement: The system will engage
advanced air-to-air and surface-to-air
threats based on the rules of
engagement.

Program Database:
Requirements, domain
model and other artifacts,
MS&A information, project
management info, etc.

UNCLASSIFIEDslide 18

UNCLASSIFIED

Why It Matters: Business Processes
Identifies:

Areas of responsibility for different stakeholders.
Maps to project Work Breakdown Structure.

Shortfalls in coverage/investments.
Return on investment and related tech maturity of individual
systems.
Risks to the overall goals of the program.

How is this done?
Each domain entity is related to activities supporting
development of applications, data or products needed to
accomplish objectives and goals.

Represents a unified simulation-based acquisition process with all
components interconnected via the UML-based architecture.

UNCLASSIFIEDslide 19

UNCLASSIFIED

Business Process Example

Project’s WBS and activities based on domain
entities and follow-on artifacts.
Enables improved governance.
Enhances task estimation and risk assessment.

UNCLASSIFIEDslide 20

UNCLASSIFIED

Domain Modeling Assessment

Replacement of legacy applications
(incremental implementation)
Gain understanding of current capabilities,
analyze costs, compare w/ proposed
replacement systems
Make future programs more efficient
Better risk management
Potential for program-wide database or
knowledge management system

Reuse across portfolio
Common foundation/linkages for program
tasks (s/w and system engineering,
analysis, business processes)

CONVERGENCE
Standardization
Greater accessibility to stakeholders
Lasting documentation (domain longevity)
Tool/simulation/code agnostic

Up-front costs
Understanding new tools, language,
processes
Personnel and skillset availability

Inertia of DoD acquisition practices
Cultural resistance

G
oo

ds
O

th
er

s

UNCLASSIFIEDslide 21

UNCLASSIFIED

Summary -- Domain Modeling:

Is fundamental to conceptual model development, which itself is a
crucial activity in large and complex projects.
Is not a new idea, though it is (perhaps) under-utilized in the DoD
community.
Enables discovery of relationships between entities within the
domain and analysis of technical problems.
Results in a robust, relatively invariant model applicable across
related domains.
Facilitates linkage of diverse projects and processes into a unified
portfolio.
Increases efficiency of acquisition processes through flexibility and
reusability.
Provides a common foundation for M&S, architecture, analysis, and
project management tasks . . .

Convergence

UNCLASSIFIEDslide 22

UNCLASSIFIED

Sources
ROBINSON, S. 2004. Simulation: The Practice of Model Development
and Use. John Wiley & Sons, Ltd, West Sussex, England.

ROSENBERG, D., AND SCOTT, K. 2001. Driving Design: The Problem
Domain. Dr. Dobb’s Journal.

ROSENBERG, D., AND STEPHENS, M. 2007. Use Case Driven Object
Modeling with UML. Apress, Berkeley, CA.

UNCLASSIFIED

UNCLASSIFIED

Questions?

27 September 2007

Contact Info:

Nathaniel Horner Nathaniel.Horner@jhuapl.edu
(240) 228-2908

Steve Topper Steve.Topper@jhuapl.edu
(240) 228-2701

“It is far better to grasp the Universe as it
really is than to persist in delusion, however
satisfying and reassuring.”

- Carl Sagan
(1934-1996)

mailto:Nathaniel.Horner@jhuapl.edu
mailto:Steve.Topper@jhuapl.edu

UNCLASSIFIED

UNCLASSIFIED

Backups

UNCLASSIFIEDslide 25

UNCLASSIFIED

Use Cases
What it is: Descriptions of interactions between the system and its users.

How to do it:
Identify

The actors – users of the system, including other systems.
The tasks facilitated by the system.
The actors’ participation in the tasks, including alternate courses of
events.

Use vocabulary previously defined in domain model.
Go back and alter the domain model as errors are uncovered through use
case exploration.

What it is for:
Answers the question, “What are the user experiences with the system?”
Helps define scope and provides general basis for more formal modeling.
Provides foundation for the dynamic behavioral model.

UNCLASSIFIEDslide 26

UNCLASSIFIED

Use Case (Example)

Use cases are listed
in a diagram
showing the
participating actors.

Each use case is
expanded into a
document
describing the flow
of events involved,
including:

Actors involved
Preconditions
Event sequences
Exceptions
Participants
Alternatives
Unresolved
issues

UNCLASSIFIEDslide 27

UNCLASSIFIED

Class Model
What it is: A more detailed static representation of the domain.

How to do it:
Extend the domain model.
Allocate behaviors to domain model entities based on use case
descriptions.
Add attributes and operations to domain model entities.
Add classes to the solution space as necessary.
Work iteratively, going back and forth between static model and
behavioral model (e.g., activity, sequence diagrams).

What it is for: Begins to translate general descriptions into more
formal system design.

UNCLASSIFIEDslide 28

UNCLASSIFIED

Class Model (Example)

UNCLASSIFIEDslide 29

UNCLASSIFIED

Activity, State, other Behavioral Diagrams
What it is: A more detailed dynamic representation of the system.

How to do it:
Create activity diagrams:

Break up use cases into component transactions or activities.
Sequence the activities.
Assign responsibility for each activity to a domain entity via swimlanes.

Create state diagrams:
Define atomic states for each domain entity.
Sequence the states.
Define conditions and constraints governing state transitions.

Use the use cases as a primary input.
Work iteratively, going back and forth between the behavioral model and the
static model (domain and class model), ensuring compatibility.

What it is for: Begins to formalize use cases into more detailed system
behaviors and activities.

UNCLASSIFIEDslide 30

UNCLASSIFIED

Behavioral Model (Example)

State Diagram
Activity Diagram

	Domain Modeling��Roadmap to Convergence�
	Overview
	Why are we here?
	Introduction
	Conceptual Modeling Process
	Conceptual Modeling Importance
	Domain Model
	Domain Model Input
	Domain Model (Example)
	Why Use Domain Modeling?
	Domain Modeling and Other Project Tasks
	Why It Matters: Research, Development & Analysis
	Analysis Example
	Why It Matters: Model and Simulation, S/W Eng.
	M&S Example
	Why It Matters: Systems Engineering
	Systems Engineering Example
	Why It Matters: Business Processes
	Business Process Example
	Domain Modeling Assessment
	Summary -- Domain Modeling:
	Sources
	Questions?
	Backups
	Use Cases
	Use Case (Example)
	Class Model
	Class Model (Example)
	Activity, State, other Behavioral Diagrams
	Behavioral Model (Example)

