

Development and Validation of a Systems Engineering Competency Model

Don Gelosh, Ph.D., CSEP-Acq Senior Systems Engineer Systems Engineering Support Office Enterprise Development/Systems and Software Engineering Office of the Deputy Under Secretary of Defense (A&T)

23 October 2008

- Why Competency Management?
- Senior Leadership Support
- Competency Management Process
- Proposed Next Steps
- Summary

Competencies are observable, measurable patterns of knowledge, skills, abilities, behaviors and other characteristics that an individual needs to perform work roles or occupational functions successfully.

Competency management helps:

- Assess and refine the requisite competencies within the current workforce
- Develop appropriate strategies to shape the skill sets and capabilities needed by the future workforce
- Identify overall capabilities we need to execute the acquisition mission
- Evaluate which competencies are mission critical and highest priority
- Develop solutions that will help us mitigate risk and respond to the challenges

Competency Model Applications

High(er)-Performing Workforce

- Improved engagement of workforce to "successful performance" support resources (that make a difference)
- Better migration of Best Practices

Human Resources System	Learning Management System					
	odels					
HR-XML HR-XML HR-XML HR-XML Performance Management System H Learning Content System HR-XML HR-XML HR-XML HR-XML						

Development & Career Planning

- Enhance Individual Development
- Enhance Organization Development

Improved Gap Assessment ROI

- Assess proficiency AND
- Assess Mission Criticality,
- Frequency, and Difficulty
- Migrate best practices & tools for successful performance

Strategic Workforce Planning

- Strategic p anning enabler for leaders
- Enhanced Management of
 Mission Critical Competencies
- Deliberate, earlier "change management"
- Information for tactical resource decisions

Recruiting & Selection

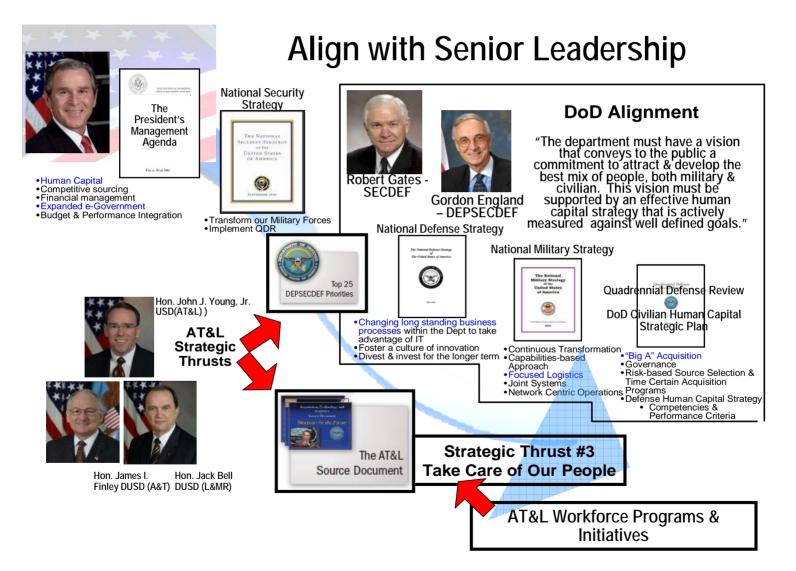
- Improve identification of key behaviors contributing to successful performance
- Improve the "Benefits Package" story "World-class tools for your development and success"

Agile Mission Support

- Enables tactical, agile targeting of resources to achieve desired capability
- Enables improved organizational refinements to align the skills with mission needs

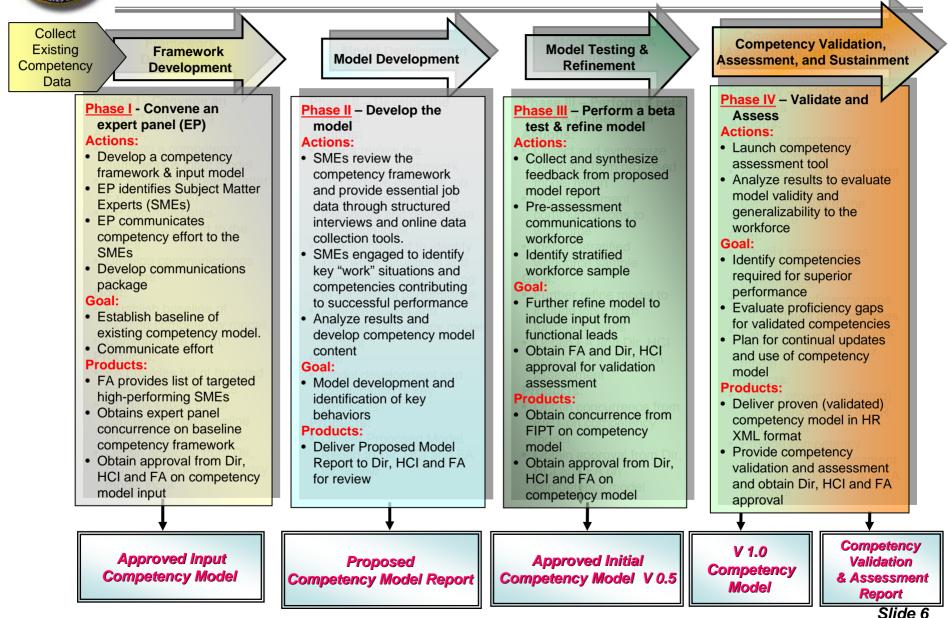
Improved Learnir g/Training

- Improved alignment of training to "successful perform ance" needs
- Improved training in restment
- Enables 21st Century Training Framework (Core Plus)


Succession Planning

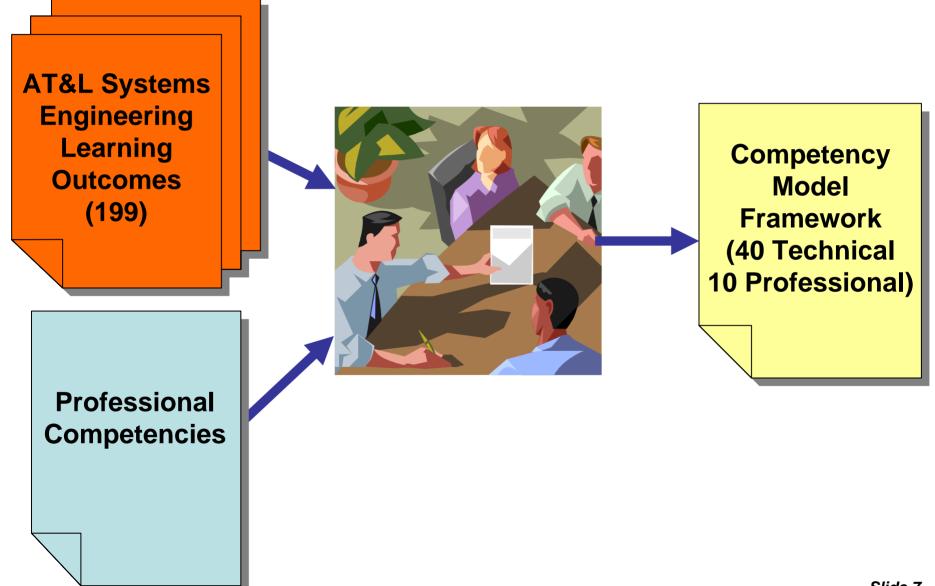
- Identify expected critical vacancies
- Identify employees & candidate gaps

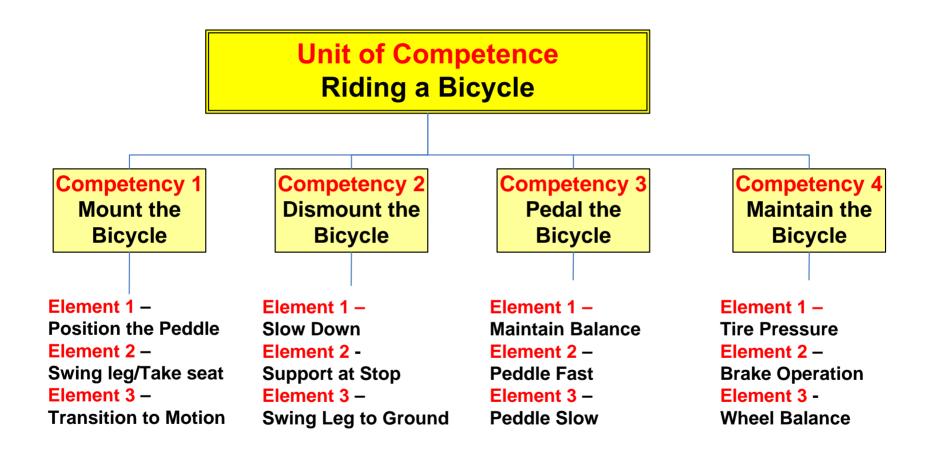
Senior Leadership Support is Critical!!!



AT&L Competency Management Initiative ... Enabling Successful Acquisition Outcomes

AT&L Competency Management Process




Phase I: Expert Panel and Competency Model Framework Development

Technical Competencies								
	Analytical		Technical Management		General			
	SE Tools & Techniques Design Considerations		Technical Management Processes		Total Systems View			
1	Technical Basis for Cost	21	Decision Analysis	36	Acquisition			
2	Systems Engineering Plans	22	Technical Planning	37	IPPD			
3	Work Breakdown Structure	23	Technical Assessment	38	Leadership			
4	Value Engineering	24	Requirements Management	39	International Acquisition			
5	Technical Performance Measurement	25	Risk Management	40	Professional Ethics			
6	Trade Studies	26	Configuration Management		•			
7	Modeling and Simulation	27	Technical Data Management	1				
8	Failure, Modes, Effects & Criticality Analysis	28	Interface Management	1				
9	Requirements Traceability Matrix	29	Technical Data Packages	1 🔽	Professional Competencies			
10	Safety Analysis	30	Specifications	1 '	rolessional competencies			
11	SE Design Considerations	31	Earned Value Management	1 4	1 Communication			
12	Requirements Development	32	IMP/IMS	1 4	2 Analytical Skills			
13	Logical Analysis	33	Technical Reviews	1 4	3 Decision Making			
14	Design Solution	34	Software Engineering	1 4	4 Problem Solving			
15	Implementation	35	Systems Engineering by Phases	1 4	5 Technology Management			
16	Integration			' 4	6 Team Building			
17	Verification	1		4	7 Influencing and Negotiating			
18	Validation	1		4	8 Interpersonal Skills			
19	Transition	1		4	9 Strategic Thinking			
20	System Assurance	1		5	0 Understanding Attributes of			
					Evidence and Rational Decisions			

SE Competency Model Examples

Unit of Competence	Competency	Elements	Knowledge Items
	•••••••••••		
#1 Analytical	Technical Basis for Cost	Apply knowledge of cost drivers to develop cost estimates and program budgets that reflect program phase requirements and best practices.	Knowledge of cost drivers and cost estimating techniques and best practices
#1 Analytical	Systems Engineering Plans	Identify the proper points within a program's lifecycle to generate a Systems Engineering Plan (SEP) that describes the program's SE processes, resources, metrics, and technical review process.	Knowledge of SEP preparaton guidance
#1 Analytical	Requirements Development	Apply the Requirements Development process to translate inputs from relevant stakeholders into technical requirements.	Knowledge of requirements management tools
#1 Analytical	Verification	Apply the Verification process to confirm that the system element meets the design specifications as defined in the functional, allocated, and product baselines and to answer the question: 'Did you build it right?'	Knowledge of verification (test and evaluation) techniques
#1 Analytical	Validation	Apply the Validation process to test the performance of systems within their intended operational environment and to answer the question 'Did you build the right thing?'	Knowledge of validation (operational test and evaluation) techniques

- SMEs review the competency model framework and provide essential job data through an online data collection tool.
- SMEs can add/delete competencies and associated elements and knowledge items.
- SMEs must identify at least two key "work" situations and associated competencies that contribute to successful performance.
- Results are analyzed and used to develop a complete competency model.

SME Competency Review

G · O · 🖹 🖻 🏠 🔎 📩 🤣 🙆 · 🛄 🏭

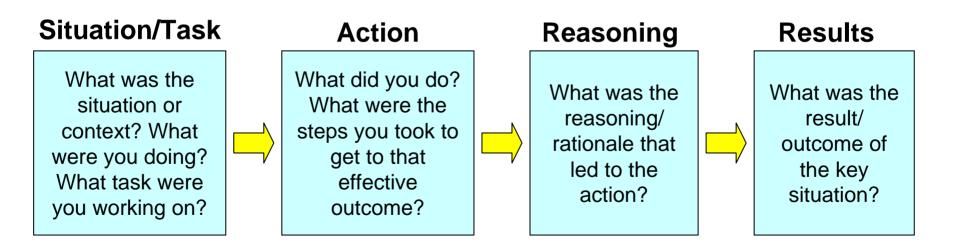
Unit of Competence #1 Analytical

Includes the analytical and technical processes of systems engineering with a full understanding of tools and techniques and all design considerations.

Competency Element	Frequency	Importance	Level First Used
Technical Basis for Cost - Element 1. Apply knowledge of cost drivers to develop cost estimates and program budgets that reflect program phase requirements and best practices.	 1 Never 2 Sometimes 3 Often 4 Frequently 5 Very Frequently N/A 	2 Sometimes02 Less Important3 Often03 Moderately Important4 Frequently04 Important5 Very Frequently05 Very Important	
Systems Engineering Plans - Element 1 of 3 - Element 2. Identify the proper points within a program's lifecycle to generate a Systems Engineering Plan (SEP) that describes the program's SE processes, resources, metrics, and technical review process.	 1 Never 2 Sometimes 3 Often 4 Frequently 5 Very Frequently N/A 	 1 Not Important 2 Less Important 3 Moderately Important 4 Important 5 Very Important N/A 	 1 Entry Level 2 Mid-Level 3 Expert/Senior Level N/A
Systems Engineering Plans - Element 2 of 3 - Element 3. Develop the critical contents of a SEP including government and contractor SE processes, the technical baseline approach, program control tools, and the role of SE to guide all technical aspects of an acquisition program.	 1 Never 2 Sometimes 3 Often 4 Frequently 5 Very Frequently N/A 	 1 Not Important 2 Less Important 3 Moderately Important 4 Important 5 Very Important N/A 	 1 Entry Level 2 Mid-Level 3 Expert/Senior Level N/A
Systems Engineering Plans - Element 3 of 3 - Element 4. Determine what enterprise, system and software architectures are needed to reason about the system, to inform recommendations and decisions regarding software implementations in the context of the system being acquired and to allow effective communication across the stakeholders throughout the system life cycle.	 1 Never 2 Sometimes 3 Often 4 Frequently 5 Very Frequently N/A 	 1 Not Important 2 Less Important 3 Moderately Important 4 Important 5 Very Important N/A 	 1 Entry Level 2 Mid-Level 3 Expert/Senior Level N/A
Work Breakdown Structure - Element 5. Translate the system design (including all products and services) into a Work Breakdown Structure (WBS) to ensure that all of the appropriate SE activities are implemented.	 1 Never 2 Sometimes 3 Often 4 Frequently 5 Very Frequently 	 1 Not Important 2 Less Important 3 Moderately Important 4 Important 5 Very Important 	 1 Entry Level 2 Mid-Level 3 Expert/Senior Level N/A

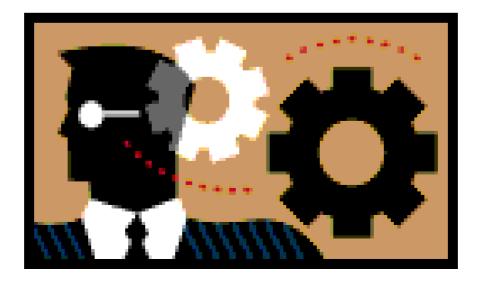
SMEs review each competency element and provide information on:

- Frequency
- Importance
- Level First Used

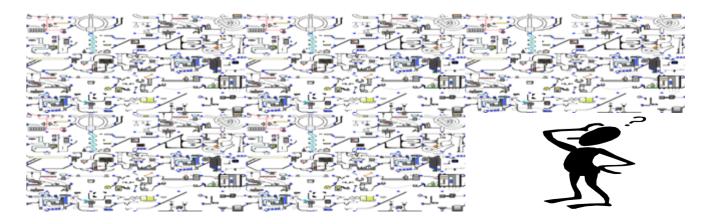


Key Situations: a method of data collection from subject matter experts regarding "what it takes" to perform effectively on your job.

Using the STARR Method of Description



- 1. Do you identify yourself to others as a systems engineer?
- 2. Do you have the appropriate resources to do your job?
- 3. Are you allowed to apply new skills acquired through recent education and training to perform your job?
- 4. Does your organizational culture encourage the application of new skills?
- 5. Do you believe additional advanced or senior level training in systems engineering is needed?
- 6. Have you received training associated with integrating software into warfare related systems?
- 7. If you answered yes to Question 6, has this training provided you with an adequate understanding of potential issues associated with integrating software into warfare related systems?
- 8. What do you see as the primary community wide SPRDE workforce capability challenge?


- Collect and synthesize feedback, refine the model.
- Further refine model to include input from Expert Panel and functional leads.
- Send pre-assessment communications to workforce.
- Identify stratified workforce sample.

- Launch competency assessment tool.
- Analyze results to evaluate model validity and general applicability to the workforce.
- Identify competencies required for superior performance.
- Evaluate proficiency gaps for validated competencies.
- Plan for continual updates and use of competency model.

Improve the Competency Model:

- Compare and contrast with other competency models leverage best of the best
- Incorporate results from SE education and research efforts
- Develop a sub-set of "Core SE Competencies" that define the true Systems Engineers

Apply the Competency Model:

- Use the Core Competency sub-set to help identify the true SEs in the SPRDE career field
- Use the model to develop criteria for hiring Entry-level, Journeyman-level, and Highly Qualified Experts
- Use the model to drive SE education, training, and experience opportunities – a guide to where you should apply resources

To successfully develop and implement a competency management program, you should:

- 1. Develop a competency management plan.
- 2. Solicit and obtain senior leadership support.
- 3. Develop a competency assessment model framework.
- 4. Validate the model with high-performing subject matter experts.
- 5. Test and refine the model with input from the functional leaders.
- 6. Assess the target workforce against the competency model to identify competencies required for superior performance and to evaluate proficiency gaps.
- 7. Update the plan and apply the competency model as needed.
- 8. Provide reports.

Questions?

Don Gelosh, Ph.D., CSEP-Acq Senior Systems Engineer OSD (AT&L) SSE/ED

1851 SOUTH BELL STREET CRYSTAL MALL 3 SUITE 102 ARLINGTON, VA 22202

OFFICE: 703-602-0851 EXT 194 FAX: 703-602-3560

Backup Slides

INCOSE UK Advisory Board Systems Engineering Competencies Framework

Systems Thinking

Systems concepts Super-system capability issues Enterprise and technology environment

Systems Engineering Management

Concurrent engineering Enterprise Integration Integration of specialisms Lifecycle process definition Planning, monitoring and controlling

Holistic Lifecycle view

Determine and manage stakeholder requirements System Design: Architectural design Concept generation Design for ... **Functional analysis Interface Management** Maintaining Design Integrity Modeling and Simulation Select Preferred Solution System Robustness Integration & Verification Validation Transition to Operation

INCOSE Systems Engineering Handbook v. 3.1, August 2007

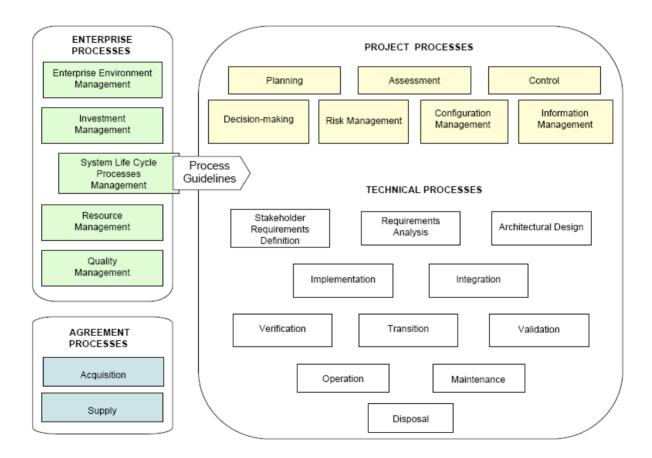


Figure 1-1 System Life Cycle Processes Overview per ISO/IEC 15288