
Applying Open Architecture Concepts to
Mission and Ship Systems

John M. Green Gregory Miller
Senior Lecturer Lecturer

Department of Systems Engineering

2

Introduction

• Purpose: to introduce a simulation based methodology to
facilitate development of a software product line architecture
concept for the Navy’s C5ISR systems.

• Two key advantages to the proposed methodology:
1. it provides a formal systems approach to the verification of the product

line architecture requirements consistent with the Department of
Defense Architecture Framework.

2. it provides a medium for the iterative development of architectures
that blend the operational concepts of FORCEnet with the system and
technical imperatives of Open Architecture and Services-Oriented
Architecture (SOA).

C2 GridC2 Grid

Sensor GridSensor Grid

Engagement GridEngagement Grid

3

What I’m Going to Tell You

• Background
• Technical Approach

– Key Concepts
– Open Architecture
– Domain Modeling
– Formal Methods
– H-P Method
– Details of the Technical Approach

• Conclusion

4

Background

• The last 15 years (or thereabouts) has seen a number of
interesting developments in the technologies that support
C4ISR system development.
– For example, the advent of CEC and GPS provided the impetus for the

conceptual development of Network-Centric Warfare (NCW),
Network-Centric Operations (NCO) and FORCEnet [Alberts, Garstka,
and Stein 2000].

– Yet, despite all that has been written about the concepts of FORCEnet
and Open Architecture (OA), there has been little written on how these
two concepts will come together in the naval C4ISR systems of the
future.

• The main emphasis has been on technologies such as Internet
Protocol version 6 (IPv6), not the architecture.

• As a result, there is no commonly shared or understood
model of what this end state may look like.

5

More Background

• There is a tendency to view the
system architecture using existing
paradigms that were used to
develop the “stove-piped”
systems that are now proving to
be limited in their capability.

• This is a “paving the cow paths”
approach and has made
developing FORCEnet capable
systems difficult.

• European firms such as Thales,
Saabtech and Terma have already
validated the concepts of open
architecture, software product
lines, and software reuse as
applied to combat systems

6

Key Concepts

• In addition to lessons learned from European firms,
the proposed Technical approach is built upon lessons
learned from Lockheed Martin’s Norwegian Frigate
Project and a predecessor program, Taiwan’s PFG-2
Class Frigate project

• Valuable lessons were also learned from the
predecessor program to OA, the Common Command
and Decision (Common C&D) project.

• Common C&D resulted in the development of several
FORCEnet related concepts that were briefed to the
Assistant Secretary of the Navy for Research and
Development.

7

OA Principles

• The key Open Architecture principles espoused by the Navy
are [Naval OA Strategy]:
– Modular design and design disclosure
– Reusable application software
– Interoperable joint warfighting applications and secure information

exchange
– Life-cycle affordability
– Encouraging competition and collaboration through development of

alternative solutions and sources
• The first two principles are especially relevant to this paper. It

is the authors’ belief that proper attention to these principles
will result in software product lines that provide domain
specific solutions.

8

The Details of the Technical Approach

• The ability to make good design decisions
early in the process is a significant driver in
effectively lowering life-cycle cost and system
development time.

• There are two key issues to be addressed with
the use of the Open Architecture concept:
– What is the structure of the various product lines

required to support the various warfare domains,
and

– What is the technical approach?

9

Domain Modeling

Domain
Analysis &
Modeling

Domain
Architectural

Design
Implementation of
Domain Specific

Reusable Components

Domain Reuse Library

Target System
Specification
Generation

Target System Library

Domain
Requirements

Target System
Requirements

Reusable
Specification

Reusable
Architecture

Reusable
Components

Unsatisfied Design Constraints

Unsatisfied
Requirements

Target System
Architecture
Generation Target System

Configuration

Reusable Specification Reusable
Architecture

Target System
Specification

Target System
Architecture

Executable
Target System

Reusable
Components

Target System
Configuration
Parameters

Domain
Analysis &
Modeling

Domain
Architectural

Design
Implementation of
Domain Specific

Reusable Components

Domain Reuse Library

Target System
Specification
Generation

Target System Library

Domain
Requirements

Target System
Requirements

Reusable
Specification

Reusable
Architecture

Reusable
Components

Unsatisfied Design Constraints

Unsatisfied
Requirements

Target System
Architecture
Generation Target System

Configuration

Reusable Specification Reusable
Architecture

Target System
Specification

Target System
Architecture

Executable
Target System

Reusable
Components

Target System
Configuration
Parameters

10

Formal Methods

• Formal methods are mathematically-based techniques for the
specification, development and verification of software and
hardware systems.

• Natural language specifications tend to get out of hand as the
document grows and with growth comes ambiguity.

• The use of formal methods for software and hardware design
is motivated by the expectation that, as in other engineering
disciplines, performing appropriate mathematical analyses can
contribute to the reliability and robustness of a design.

• Formal methods are appropriate for the design of discrete-
event real-time systems because they can be used to specify
system behavior without ambiguity.

11

The Approach

• The following approach uses two formal
methods as a foundation:
– Finite State Machines (FSM)
– Petri Nets

State

Output
Conditions

Outputs

Inputs

State
Transition
Conditions

Transition
(Immediate)

Transition
(Exponential)

Transition
(Deterministic)

A Petri net consists of places, transitions, and directed arcs

12

The Methodology

• Centered around the Hatley-Pirbhai “Process for
Systems Architecture and Requirements Engineering”
(PSARE)
– Model-based process that uses FSM & Petri Nets
– Accommodates HW, SW & PW
– Can be described using SYSML/UML or EFFBD’s (to

name two) (not tool dependent)
– Results in both a functional and architectural specification

model
– Can be captured with Clymer’s OpEMCSS modeling

approach which represents both FSM and Petri Nets
• Core elements are the process/control model and the

architecture template
Operational Evaluation Modeling for Context Sensitive Systems
http://www.ecs.fullerton.edu/~jclymer/

13

Hatley-Pirbhai Process/Control Model

Process
 Model

Control
 Model

Process
Activators

Data
Conditions

Input Processed
Output

Control
Outputs

Control
Inputs

Decision
Table

Event
Logic 2

Action
Logic

State
Transition
Diagram

Event
Logic 1

List of
Internal
Signals

List of
Internal
Signals

List of
EventsList of

Events

List of
Actions

List of
Input

Signals

List of
Input

Signals

14

Hatley-Pirbhai Architecture Template

User Interface Processing

Main Functions
(Core Processing)

Output
processing

Input
Processing

Support
Functions

15

H-P Overview

The steps

The elements

Figures used with permission
from H&A Systems Engineering
http://www.hasys.com/

H-P originally used
Yourdon-DeMarco

notation

16

Allocating to HW, SW & PWAllocating to HW, SW & PW

Figure used with permission
from H&A Systems Engineering
http://www.hasys.com/

17

Clymer’s OpEMCSS Approach

18

H-P Advantages

Figure used with
permission from
H&A Systems
Engineering
http://www.hasys.
com/

19

Advantages of the Technical Approach 2

• Another advantage of a
simulation-based approach using
H-P can be seen by reference to
the figure.

• As system development proceeds
down the left side of the “Vee”
the models developed provide the
foundation and guidance for the
steps as integration proceeds up
the right side of the “Vee”.

• It should noted that the “Vee”
model has been demonstrated to
be consistent with spiral
development

20

Conclusion
• The presented work gives emphasis to the value of a formal process in

architecture development.
• In this case formal will mean that the architecture requirements will be

validated through the use of simulation as part of a defined methodology as
described.

• Specifically, the model driven architecture approach has the following
advantages:

– It is a formal method for tying the architecture requirements process to the
architecture verification process.

– It is consistent with acquisition policy
– It provides a methodology to test Network Centric Operations concepts such as

MDA, CMD, and TCT.
• The use of a simulation-based methodology will result in the requisite

DODAF artifacts required for both requirements capture and the
description of the system functional behavior.

• In addition, it supports the development of architectures that incorporate
modular design and the identification of reusable and interoperable
modules/applications.

• This approach is consistent with the development of a capability/systems-
based architecture using a spiral or “Vee” approach.

21

Future Work

• Incorporation of the use case paradigm
• Mapping to DoDAF
• Incorporation of Clymer’s work
• Merging notations/languages into a universal

architecture descriptive framework

	Applying Open Architecture Concepts to Mission and Ship Systems
	Introduction
	What I’m Going to Tell You
	Background
	More Background
	Key Concepts
	OA Principles
	The Details of the Technical Approach
	Domain Modeling
	Formal Methods
	The Approach
	The Methodology
	Hatley-Pirbhai Process/Control Model
	Hatley-Pirbhai Architecture Template
	H-P Overview
	Allocating to HW, SW & PW
	Clymer’s OpEMCSS Approach
	H-P Advantages
	Advantages of the Technical Approach 2
	Conclusion
	Future Work

