
111th Annual NDIA Systems Engineering Conference, 21 October 2008

Architecting Systems to Meet
Expectations - Managing Quality
Characteristics To Reduce Risk

Paul R. Croll
CSC

pcroll@csc.com

Chair, NDIA Software Industry

Experts Panel

Co-Chair, DoD Software in

Acquisition Working Group on

Software Quality Attributes

211th Annual NDIA Systems Engineering Conference, 21 October 2008

Outline

The Systems Quality Challenge

Architecture And Quality Defined

Quality Attribute-Based Approaches To
Architecting Systems

Making The Case For Architectural Quality

Customer Implications Of Quality-Attribute-
Based Architectural Approaches

Process Maturity And Product Quality

A Current Concern: Architecting For
System Assurance

Summary

311th Annual NDIA Systems Engineering Conference, 21 October 2008

It’s About The Architecture . . .

 One of the top ten emerging systemic

issues, from fifty-two in-depth program

reviews since March 2004, was

inadequate software architectures

Source: D. Castellano. Systemic Root Cause Analysis. NDIA Systems

Engineering Division Strategic Planning Meeting, December, 2007.

411th Annual NDIA Systems Engineering Conference, 21 October 2008

It’s Also About Quality . . .

The NDIA Top Software Issues Workshop examined
the current most critical issues in software
engineering that impact the acquisition and
successful deployment of software-intensive
systems

Two issues emerged that were focused specifically
on the relationship between software quality and
architecture:

– Ensure defined quality attributes . . . are addressed in
requirements, architecture, and design.

– Define software assurance quality attributes that can
be addressed during architectural trade-offs

Source: G. Draper (ed.), Top Software Engineering Issues Within Department of Defense

and Defense Industry. National Defense Industrial Association, Arlington, VA, August 2006.

511th Annual NDIA Systems Engineering Conference, 21 October 2008

The Systems Quality
Challenge

If we are successful in managing risk for

the systems we build, and meet

stakeholder expectations, we must:

– Start as early as possible in the design

process to understand the extent to which

those expectations might be achieved

– Develop candidate system architectures and

perform architecture trade-offs

– Define and use a set of quantifiable system

attributes tied to stakeholder expectations,

against which we can measure success

611th Annual NDIA Systems Engineering Conference, 21 October 2008

The Systems Quality Challenge Is
A Software Quality Challenge

Most systems we encounter today

contain software elements and most

depend upon those software

elements for a good portion of their

functionality

Modern systems architecture issues

cannot be adequately addressed

without considering the implications

of software architecture

711th Annual NDIA Systems Engineering Conference, 21 October 2008

Architecture Defined

The fundamental organization of a system embodied
in its components, their relationships to each other,
and to the environment, and the principles guiding its
design and evolution.

The set of all of the most important, pervasive,
higher-level, strategic decisions, inventions,
engineering trade-offs, assumptions, and their
associated rationales concerning how the system
meets its allocated and derived product and process
requirements

Source: D. Firesmith, P. Capell, D. Falkenthal, C. Hammons, D. Latimer, and T. Merendino. The

Method-Framework for Engineering System Architectures (MFESA): Generating Effective and

Efficient Project-Specific System Architecture Engineering Methods. November, 2008. CRC Pr I Llc,

Source: IEEE 1471-2000, IEEE Recommended Practice for Architectural

Description of Software-Intensive Systems. The Institute of Electrical and

Electronics Engineers, Inc., New York, NY, 2000.

811th Annual NDIA Systems Engineering Conference, 21 October 2008

Quality Defined

Software quality: The degree to

which software possesses a desired

combination of attributes.

Software product quality: The totality

of characteristics of an entity that

bear on its ability to satisfy stated

and implied needs.

Source: IEEE Standard 1061-1992. Standard for a Software Quality Metrics

Methodology. New York: Institute of Electrical and Electronics Engineers, 1992.

Source: ISO/IEC 9126-1: Information Technology - Software product quality -

Part 1: Quality model. ISO, Geneva Switzerland, 2001.

911th Annual NDIA Systems Engineering Conference, 21 October 2008

Quality Attribute-Based Approaches
To Architecting Systems

Developing systematic ways to relate the
software quality attributes of a system to
the system’s architecture provides a sound
basis for making objective decisions about
design tradeoffs and enables engineers to
make reasonably accurate predictions
about a system’s attributes that are free
from bias and hidden assumptions. The
ultimate goal is the ability to quantitatively
evaluate and trade off multiple software
quality attributes to arrive at a better
overall system. Source: M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock.

Quality Attributes, CMU/SEI-95-TR-021. Software Engineering

Institute, Carnegie Mellon University, December 1995.

1011th Annual NDIA Systems Engineering Conference, 21 October 2008

Relationships Between
Attributes

Collaboration
– Increasing the degree to which one attribute

is realized increases the realization of
another

Damage
– Increasing the degree to which one attribute

is realized decreases the realization of
another

Dependency
– The degree to which one attribute is realized,

is dependent upon the realization of at least
some sub-characteristics of another

Source: X. Franch and J. Carvallo. “Using Quality Models in

Software Package Selection”, IEEE Software, pp. 34-41. New

York: Institute of Electrical and Electronics Engineers, 2003.

1111th Annual NDIA Systems Engineering Conference, 21 October 2008

Optimization Among Quality
Attributes

Example: A large telecommunication
application

– Good optimization (Collaboration)
balance among multiple quality attributes, such as
maintainability, performance and availability

– Poor optimization (Damage)
Focusing solely on maintainability often results in
poor system performance

Focusing on performance and availability alone may
result in result in poor maintainability

Explicit architectural decisions can facilitate
optimization among quality attributes

Source: D. Häggander, L. Lundberg, and J. Matton, “Quality Attribute Conflicts - Experiences from a Large

Telecommunication Application,” Proceedings of the Seventh International Conference on Engineering of

Complex Computer Systems (ICECCS’01), New York: Institute of Electrical and Electronics Engineers, 2001.

1211th Annual NDIA Systems Engineering Conference, 21 October 2008

Understanding Quality In The Context
Of Architectural Structures

Structures for describing architectures
– Functional structure is the decomposition of the functionality that the

system needs to support

– Code structure is the code abstractions from which the system is
built

– Concurrency structure is the representation of logical concurrency
among the components of the system

– Physical structure is just that, the structure of the physical
components of the system

– Developmental structure is the structure of the files and the
directories identifying the system configuration as the system
evolves

Using architectural structures to understand quality
– Concurrency and Physical structures are useful in understanding

system Performance

– Concurrency and Code structures are useful in understanding
system Security

– Functional, Code, and Developmental structures are useful in
understanding system Maintainability

Source: L. Bass and R. Kazman, Architecture-Based

Development, CMU/SEI-99-TR-007. Software Engineering

Institute, Carnegie Mellon University, April 1999.

1311th Annual NDIA Systems Engineering Conference, 21 October 2008

Attribute-Driven Design

Attribute-Driven Design (ADD) produces an initial software
architecture description from a set of design decisions that
show:
– Partitioning of the system into major computational and

developmental elements

– What elements will be part of the different system structures,
their type, and the properties and structural relations they
possess

– What interactions will occur among elements, the properties of
those interactions, and the mechanisms by which they take
place

In the very first step in ADD, quality attributes requirements
are expressed as the system’s desired measurable quality
attribute response to a specific stimulus

Knowing these requirements for each quality attribute
supports the selection of design patterns and tactics to
achieve those requirements

Source: R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B.

Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023.

Software Engineering Institute, Carnegie Mellon University, November 2006.

1411th Annual NDIA Systems Engineering Conference, 21 October 2008

Understanding The Consequences Of Architectural

Decisions With Respect To Quality Attributes

The Architecture Tradeoff Analysis MethodSM (ATAMSM) is
dependent upon quality attribute characterizations, like
those produced through ADD, that provide the following
information about each attribute:
– The stimuli to which the architecture must respond

– How the quality attribute will be measured or observed to
determine how well it has been achieved

– The key architectural decisions that impact achieving the
attribute requirement

ATAM takes proposed architectural approaches and
analyzes them based on quality attributes
– generally specified in terms of scenarios addressing stimuli

and responses
Use case scenarios, describing typical uses of the system

Growth scenarios, addressing planned changes to the system

Exploratory scenarios, addressing any possible extreme
changes that would stress the system

ATAM also identifies sensitivity points and tradeoff points
Source: R. Kazman, M. Klein, and P. Clements, ATAM: Method for Architecture Evaluation,

CMU/SEI-2000-TR-004, Software Engineering Institute, Carnegie Mellon University, August 2000.

1511th Annual NDIA Systems Engineering Conference, 21 October 2008

Some Real World Architecture
Review Issues

Results from four AT&T companies

Between 1989 and 2000

More than 1,000 issues

Six classes of issues

– Product architecture and design, 29–49%

– Management controls, 14–26%

– Problem definition,10–18%

– Process, 4–19%

– Technology, 3–14%

– Domain knowledge, 2–5%
Source: J. Maranzano, S. Rozsypal, G. Zimmerman, G. Warnken, P. Wirth, and D. Weiss,

Architecture Reviews: Practice and Experience, IEEE Software, March/April 2005.

1611th Annual NDIA Systems Engineering Conference, 21 October 2008

Making The Case For
Architectural Quality

The Quality Case
– The set of claims, supporting arguments, and

supporting evidence that provide confidence that the
system will in fact demonstrate its expected quality
characteristics

– Common types of quality cases include:
safety cases

security cases

assurance cases

The Architectural Quality Case
– The architectural claims, supporting arguments,

including architectural decisions and tradeoffs,
architectural representations, and demonstrations that
the architecture will exhibit its expected quality
characteristics

Source: D. Firesmith, P. Capell, D. Falkenthal, C. Hammons, D. Latimer, and T. Merendino. The

Method-Framework for Engineering System Architectures (MFESA): Generating Effective and

Efficient Project-Specific System Architecture Engineering Methods. November, 2008. CRC Pr I Llc,

1711th Annual NDIA Systems Engineering Conference, 21 October 2008

Risk Management Implications Of Quality-
Attribute-Based Architectural Approaches

Stakeholder quality requirements will have been
distilled into architectural drivers which will have
shaped the system architecture

Tradeoffs will have been made to optimize the
realization of important quality characteristics, in
concert with stakeholder expectations

The level of confidence that the resultant
architecture will meet those expectations will be
known

Stakeholders will be knowledgeable of any residual
risk they are accepting by accepting the delivered
system

Source: R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson, R. Nord, and B.

Wood, Attribute-Driven Design (ADD), Version 2.0, CMU/SEI-2006-TR-023.

Software Engineering Institute, Carnegie Mellon University, November 2006.

1811th Annual NDIA Systems Engineering Conference, 21 October 2008

Process Maturity Does Not
Guarantee Product Quality

The CMMI® embodies the process
management premise that, the quality
of a system or product is highly
influenced by the quality of the process
used to develop and maintain it

However:
– Several recent program failures from

organizations claiming high maturity
levels have caused some to doubt
whether CMMI ® improves the chances of
a successful project

Source: CMMI® for Development, Version 1.2,

CMU/SEI-2006-TR-008, Software Engineering Institute,

Carnegie Mellon University, August 2006

Source: R. Hefner. CMMI Horror Stories: When Good

Projects Go Bad. SEPG Conference, March 2006

1911th Annual NDIA Systems Engineering Conference, 21 October 2008

. . . But Engineering Discipline
Might

Process maturity can in many cases

improve project performance, but

special attention to the engineering

processes is required to ensure that

stakeholder quality expectations are

realized in resultant products.

2011th Annual NDIA Systems Engineering Conference, 21 October 2008

A Current Concern: Architecting
For System Assurance

The challenge:

– Integrating a heterogeneous set of globally engineered
and supplied proprietary, open-source, and other
software; hardware; and firmware; as well as legacy
systems; to create well-engineered integrated,
interoperable, and extendable systems whose
security, safety, and other risks are acceptable – or at
least tolerable.

The vision:

– The requirements for assurance are allocated among
the right systems and their critical components, and
such systems are designed and sustained at a known
level of assurance.

Source: K. Baldwin. DOD Software Engineering and

System Assurance New Organization – New Vision,

DHS/DOD Software Assurance Forum, March 8, 2007

Source: P. Croll, “Engineering for System Assurance – A State of the Practice

Report,” Proceedings of the 1st Annual IEEE Systems Conference. New York:

Institute of Electrical and Electronics Engineers, April 2007

2111th Annual NDIA Systems Engineering Conference, 21 October 2008

Architectural Principles For
Assurance

Isolate critical components from less-critical
components

Make critical components easier to assure by
making them smaller and less complex

Separate data and limit data and control flows

Include defensive components whose job is to
protect other components from each other and/or
the surrounding environment

Understanding the interrelationships between
components and their linkages

Use defense-in-depth measures where appropriate

Beware of maximizing performance to the detriment
of assurance

Source: Engineering For System Assurance, Version 1.0. National Defense

Industrial Association, System Assurance Committee, Arlington, Virginia

October 2008.

2211th Annual NDIA Systems Engineering Conference, 21 October 2008

Summary

If we are to be successful in managing
risk for the systems we build, and meet
stakeholder expectations, we must:
– Start as early as possible in the design

process to understand the extent to which
those expectations might be achieved

– Define a set of quantifiable quality attributes
tied to stakeholder expectations, against
which we can measure success and
understand the residual risk stakeholders are
being asked to accept

– Develop candidate system architectures and
perform architecture trade-offs using those
attributes

2311th Annual NDIA Systems Engineering Conference, 21 October 2008

For More Information . . .

Paul R. Croll
CSC
10721 Combs Drive
King George, VA 22485-5824

Phone: +1 540.644.6224

Fax: +1 540.663.0276

e-mail: pcroll@csc.com

