# The System Architecture Tradeoff Analysis Method<sup>®</sup> (SySATAM<sup>®</sup>)

### Mike Gagliardi and Bill Wood

® Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.



**Software Engineering Institute** CarnegieMellon

### Purpose of the System ATAM – 1

The System ATAM is a method that helps stakeholders ask the right questions to discover potentially problematic architectural decisions (risks)

Discovered risks can then be made the focus of mitigation activities—for examples:

- changing architecture
- further analysis
- extending prototyping.

Tradeoffs can be explicitly identified and documented

- Tradeoffs made already
- Upcoming tradeoffs

### Purpose of the System ATAM – 2

The purpose is **NOT** to provide precise analyses. . . the purpose **IS** to discover risks created by architectural decisions.

We want to find *trends:* correlations between architectural decisions and predictions of system properties.



Carnegie Mellon

### **Presentation Outline**

What is an ATAM?

Similarities and Differences between ATAM and System ATAM

**Highlights of Differences** 

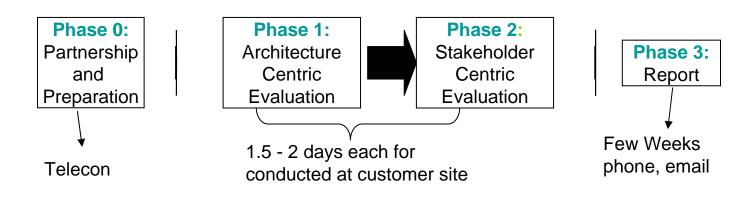
Experiences and results

Software Engineering Institute Carnegie Mellon

### Phase 2 – Stakeholders

The following is a partial list of potential stakeholders:

software architect maintainer tester performance expert security expert project manager customer (buyers, acquirers) application builder system administrator service representative system architect


developer integrator standards expert reliability/availability expert safety expert product line manager end user mission specialist/planner network administrator domain representative device H/W expert



#### Process

- Actors
  - sponsor (Program management) and architects (6)
  - Lead Evaluator has lead evaluator training
  - Evaluation team (4)- all have taken ATAM training courses
  - Stakeholders (20)

### Schedule



Software Engineering Institute Carnegie Mellon

#### **Technical Basis**

- Business and Mission Drivers
  - New threats, capabilities, technology, automation, legacy
  - Scalability, schedules, budgets, joint, coalition, FMS
- There is a documented software architecture (SAD, UML Diagrams)
  - Multiple viewpoints, views, framework
- Quality attributes are the architecture drivers
  - Performance : avoid too slow, too late, bottlenecks
    - Availability : avoid fragility due to failures
  - Security : avoid spoofing, unauthorized access

•

- Usability : avoid operator overload
- Sustainability : avoid hard to update functions and new COTS
- · Interoperability, scalability, extensibility etc

### **Technical Basis (Continued)**

- Scenarios represent the quality attributes
  - Stimulus, environment, response
  - "A tank commander's COP shows an identified threat, he has authorization to engage the threat, when it comes within his range he conducts a successful engagement and reports it via the COP".
  - Elicited in a meeting with stakeholders (or from previous QAW)
- Architectural approaches can be identified and analyzed
  Passive and active redundancy, publish/subscribe, client/server, reliable protocol
- Architectural Decisions
  - Provide a tool to assist with mapping spectrum allocation to force structure
  - Break down a system into components for transportation
  - Use a proxy-based pub/sub

#### **Technical Basis (Continued)**

- Walking scenarios through the software architecture, and having the ATAM team and stakeholders probe the quality attributes exposes architectural risks and maps each risk to business drivers
- These risks can be "rolled up" into risk themes mapped to business drivers

#### **Results- content**

- A number of scenarios (10 to 15) are analyzed and documented
- Table of risks, trade-offs, programmatic issues, atta-boys
- Rollup of the risks into risk themes

### **Results- documents**

- Summary Outbriefing after Stakeholder Phase (1 hour)
- Report (50, 60 pages) of findings with an Executive Summary (2 pages)

# **Commonalties and Differences -1**

The System ATAM (including software) basically conforms to the ATAM process, technology, and results as follows

| Process | Actors                                                 | System and Software Architects<br>Fast Tracking of subject matter experts (SME)<br>SM designers |
|---------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|         | Phases                                                 | More careful scoping (what's in, what's out)                                                    |
|         | Architecture                                           | Need system (block diagrams) and software architecture views and white papers                   |
|         | Quality<br>Attributes                                  | A few additional QA (transportability, shake and bake, force modularity, spectrum management)   |
|         | Scenarios                                              | Stress system aspects as well as software                                                       |
|         | Analysis                                               | Combination of system and software architects<br>System Architectural Approaches                |
| Results | No differences in either the outbriefing or the report |                                                                                                 |

### ATAM

- Four 2 day courses providing the basic software architecture knowledge, including an ATAM team lead evaluator course
- Have conducted numerous ATAMS
- Have an ATAM Reference Guide for the team
- Have extensive set of templates to assist the team in all activities
- External organizations (commercial, DoD contractors) have qualified leads

### SySATAM

- Have a process in-place for conducting SySATAMs
- Still in piloting Phase- have conducted 2 SySATAMs
- Have extensive set of templates to assist the team in all activities

### SME Experiences

- On one system an Evaluation Team member was also an SME
- On the other the SME was a seasoned Mechanical Engineer and a domain expert
  - Took the SME training
  - Evaluation team had to initially prompt the SME for risks.

### New Quality Attributes and associated risks

- Force Modularity, Mobility, Spectrum Management
- Logistics, installation, mechanical checks

### **New Considerations**

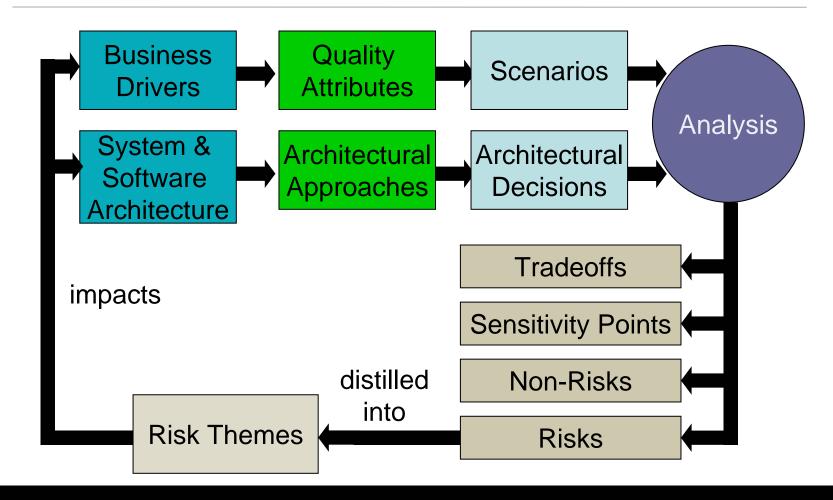
- DoDAF operational views
- experimental simulation and analysis results
- white papers
- Manual versus automated activities are more prevalent

#### **Architectural Representations**

 System architecture documentation consists mainly of block diagrams and sequence diagrams and some DoDAF lower level views

### Stakeholders

- System engineers tend to trump the software engineers
- Good exercise for system and software arch and eng to get on the same page


### Surprises

• Preparation phase was easier than expected, scoping was straightforward

### Typical Risk Themes

- There are a number of significant system engineering issues that require further analysis as a basis for architectural decision
- CONOPS for Using Programs has not been updated/supplemented to take this system into effect
- Architectural support for flexibility is powerful. However, without careful management of flexibility it could become overly complex and impose an unnecessary cognitive burden on users.
- Approach to automate and reduce test time not thought out
- Fault Tolerance approach needs to be developed

# **Conceptual Flow of ATAM**



# Conclusion

System ATAM is a natural extension to the ATAM

• Basic approach works just fine

SME is needed with functional/domain expertize

- Fast track training was effective
- Risk Themes identified areas to help the programs choose what to explore to firm up the architecture
  - Both software and system risks were revealed

Have been too busy "doing" to develop lessons learned

• But need to do more pilots first

# **For Additional Information**

Jay Douglass Business Development Product Line Systems Program Telephone: 412-268-6834 Email: jcd@sei.cmu.edu

Technical Details: Mike Gagliardi Product Line Systems Program Telephone: 412-268-7738 Email: mjg@sei.cmu.edu

World Wide Web: http://www.sei.cmu.edu/architecture

Linda Northrop Director Product Line Systems Program Telephone: 412-268-7638 Email: Imn@sei.cmu.edu

U.S. Mail: Software Engineering Institute Carnegie Mellon University 4500 Fifth Avenue Pittsburgh, PA 15213

SEI Fax: 412-268-5758