
A Framework for

Integrating Systems and

Software Engineering

NDIA Systems

Engineering

Conference
San Diego, California

Art Pyster
art.pyster@stevens.edu

Richard Turner
richard.turner@stevens.edu

October 21, 2008

mailto:richturner@speakeasy.net
mailto:richturner@speakeasy.net
mailto:richturner@speakeasy.net
mailto:richturner@speakeasy.net

Agenda

 Rationale: Why integrate systems and software

engineering?

 Touchpoint: A framework

 Initial Results

 Next steps

2

Rationale: Assertions

 Interdependent systems are those where:

 A "major" portion of the capabilities/value of the system is
delivered through software

 A "major" portion of system quality attributes "largely"
depend on software (safety, security, agility, reliability,
availability, resilience,...)

 Today most high value systems are interdependent;
that percentage is increasing

 In these systems, nearly all important decisions
require equal consideration of software
engineering and systems engineering expertise

 Technical, management, personnel and customer
concerns are included

 But, what does it mean to integrate SE and SwE?

3

Rationale: Questions needing answers

1. What outcomes do we expect from SE/SwE
integration?

 Does integration reduce key risks?

2. How do you measure integration or it’s
outcomes?

3. How and why do the SwE and SE activities
conflict, complicate, or reinforce each other?

4. How much integration is needed?
 What is the scope of integration (development,

operations, business areas…)?

 Is more integration always better?

 Is integration domain- or application-dependent?

5. Why haven’t IPTs or CMMI solved this problem?

4

Rationale: Barriers to integration

 Historical context and vestigial prejudices

 SE and SwE cultures are significantly different

 SE and SwE have different educational backgrounds

 SE and SwE vocabularies are similar but meanings

differ

 SE and SwE process implementations are often

incompatible (e.g. V versus spiral)

 SE and SwE may use the same tools differently

(UML)

 No language to discuss integration of SE and SwE

5

Rationale: Issues needing to be addressed

1. Vocabulary. There is no precise way to talk
about the integration of systems and software
engineering.

2. Measurement. There is no precise way to talk
about how much integration there is between
systems and software engineering in a particular
situation.

3. Entanglement. The complexity of the disciplines
makes it difficult to identify where software and
systems engineering touch.

4. Value. There is no comprehensive list of benefits
that can be achieved by integrating systems
and software engineering nor is there an
understanding of the associated costs.

6

Touchpoint

 A framework to support the discussion of SE/SwE

integration

 Simple and (seemingly) robust

 Provides a way to describe integration at the
practitioner level

 Describes touchpoints where the two disciplines

interact

 May help to describe the degree of

“integratedness”

7

Touchpoint Framework: Components

 Processes. The ordered activities that define the

systems and software engineering disciplines

 Touchpoints (TPs). The two discipline’s processes

touch when interactions between their
constituent activities affect program risk or value

– positively or negatively.

 Faults. A touchpoint may exist, but the process or

activity may fail to produce its maximum value.

 Resolution Strategies (RSs). For each fault, there

may be one or more actions that will eliminate

the fault or reduce its impact.

8

Touchpoint Framework: Processes

 ISO 15288 provides “harmonized” systems and

software engineering processes

 Agreement, Organizational Project-enabling,

Project, and Technical processes

9

Touchpoint Framework: Faults

10

 Gap
 Logically, there should be an interaction between the

corresponding SE and SwE processes, but the
processes do not include one. A needed activity is
therefore performed poorly, or not performed at all.

 Clash
 One or more activities in each of the two

corresponding SE and SwE processes produce are
incompatible and result in inconsistent results or
inconsistent actions.

 Waste
 Activities in the two corresponding SE and SwE

processes independently expend resources that
produce the same result or take the same action with
no added benefit to the program

Touchpoint Framework: Faults - Clashes

11

 Vocabulary

 SE/SW activities use the same terminology with

different meanings, or terms not recognized by the

other, making communication harder

 Example: Object-oriented terminology

 Value

 Software and systems engineers in an organization or

program value different process characteristics

 Example: Stability of baselines

 Mental Model

 Software and systems engineers think differently about

how to carry out process activities

 Example: “part-of” relationships vs. “uses” relationships.

Touchpoint Framework: Example TP

12

Process Touchpoint Fault Type

Architectural

Design

Systems architectures

include significant

software components

to deliver critical

capability

Software-engineering

architectures define layers of

related functionality, while most

systems-engineering methods are

hierarchical structures.

Clash –

Mental Model

Example from pilot research

Touchpoint Framework: Resolution Strategies

 There is a desire to fix faults, especially those with high

impact on risk or value.

 For each fault, there may be one or more resolution

strategies, which, when executed well, will eliminate

the fault or at least reduce its impact.

 In some cases, resolution strategies are known and just

need to be applied

 On the other hand, resolving some faults will require

research

 Resolution strategies are grouped into four traditional

categories: process, people, environment, and

technology. Any number of resolution strategies in

each category is possible for a fault.

13

Touchpoint Framework: Example RSs

14

Process Touchpoint Fault Type

Architectural

Design

Systems architectures

include significant

software components

to deliver critical

capability

Software-engineering architectures

define layers of related functionality,

while most systems-engineering

methods are hierarchical structures.

Clash –

Mental

Model

Resolution Strategy Category

Research must be conducted to resolve the clash between object-

oriented and structured methods. Maier provides some of the best

research in this area.

Technology

Design software architecture to look just like system architecture. Make it

easy for a system architect to understand. (SW systems mirror HW systems,

e.g. relays, motors, etc). Then SW helps the system architect understand

things in better detail.

Process

Middleware may be able to bridge the gap. Technology

Examples from pilot research

Touchpoint Framework: Measurement

 Provides a way to measure how much integration has
been achieved and how good that integration is.

 The amount of integration is simply the total number
of touchpoints in the implementation of the 25
processes – a higher number indicates more
integration.
 A somewhat more sophisticated approach associates a

weight with each touchpoint to reflect its potential impact
on program risk or value.

 The number of faults determines integration quality.
 Faults can also be weighted based on their consequence.

 A fault that severely impacts an important touchpoint
would be of far greater consequence than a fault
that barely impacts a minor touchpoint.

15

Initial research: Piloting

 Process activities at the “touchpoint” level are

generally not found in available traditional

documentation (standard processes, WBS, plans)

 Often technical management/practitioner activities

 Approach – interview SE and SwE leadership

 Identified ~10 programs through OSD AT&L and NDIA

 Interviewed each program to identify touchpoints,
faults, resolution strategies and challenges; rigid “no

attribution” policy

 Compared interview findings with the systemic

analysis findings of AT&L/SSE Program Support

Assessments

16

Piloting Results

 Touchpoint elements (TPs, Faults, RSs) identified by

Systemic Analysis Category

17

Category Elements No. of Projects

Architecture 12 6

CM 1 1

EVM 2 2

Human Capital 4 2

Process Planning 3 3

Requirements 23 10

Risk Management 2 2

System Integration 4 4

Software Metrics (Visibility) 4 3

Piloting Results

 Touchpoint elements not in Systemic Analysis

Category

18

Category Elements No. of Projects

Contracting 4 3

Life Cycle 7 4

Technical Reviews 2 2

Sample Architectural Design Process Findings

19

Touchpoint Fault Type

Architecture concept Underutilized software capability Gap

Resolution Strategy Category

Concept development should be performed jointly and careful trades

made that reflect HW and SW capabilities, strengths, and weaknesses

Process

Touchpoint Fault Type

Meeting non-functional

requirements

HW reliability numbers are calculated to

many decimal places, and include the

contributions of very low-level WBS

components. SW reliability is not

understood and so ignored.

Gap

Resolution Strategy Category

Research in integrated reliability approaches is needed Technology

Train systems and reliability engineers to understand software reliability People

From pilot research
Authors’ suggestion

Sample Requirements Analysis Process Findings

20

Touchpoint Fault Type

Software Requirements SW specifications that limit trade space Clash –

Mental

Model

Resolution Strategy Category

Define software requirements in terms of “what” not “how.” Process

SE and SW collaborate in the development of software requirements Process

Touchpoint Fault Type

Requirement Maturation The difference in speed of maturation

between HW and SW requirements causes

tension between SEs and SwEs.

Clash –

Mental

Model

Resolution Strategy Category

Requirements management tools and processes need to better support iterative

approaches to requirements maturation.

Technology

From pilot research
Authors’ suggestion

Sample Life Cycle Management Process Finding

21

Touchpoint Fault Type

SE and SW life cycles Life cycle speeds differ causing perceived

architecture instability and schedule

coordination problems

Clash –Value

Resolution Strategy Category

Involve SEs in software projects using iterative life cycles to gain comfort and

trust.

People

From pilot research
Authors’ suggestion

Conclusions and Next steps

 Framework seems useful

 Need much more data

 More programs

 More variety

 Refine and extend initial findings with new data

 Create products that make findings useful to

programs

22

Questions and Discussion

23

