

#### **PRESENTATION**

# Rocket Motor Study DUSD(A&T) Business Process Review

Office of the Under Secretary of Defense for Acquisition, Technology & Logistics/ DUSD(A&T)/PSA/LW&M 23 October 2008



□ Concept Decision Review of March 2007

**Joint Air-to-Ground Missile** 

"The DUSD(A&T) will lead a Business Process Review to determine whether the projected 54-60 month development/certification time for rocket motors can be streamlined."

Concept Decision Memorandum of May 1, 2007



□ Provide overview of the methodology, results of the review, and next steps



- ☐ Service Acquisition Executive buy-in up front
- ☐ Formed a Rocket Motor IPT Service PEOs, OSD
- ☐ Selected a methodology for the review
  - Lean Six Sigma
- ☐ Formed a Project team Nationwide SMEs from Service labs
- ☐ IPT used to oversee project



## **Project Goal, Objective and Scope**

- Goal Provide a recommendation on how to reduce the cycle time for the development and certification of rocket motors with an initial focus on joint weapons
- Objective Develop a streamlined process for joint rocket motor development and certification with a duration of less than 5 years

### Scope

- All activities from concept decision to IOC, but focus on B to C
- Qualification of rocket motor energetics
- Development and test of rocket motor
- Integration of rocket motor to weapon system
- Integration of weapon system on the platform (aircraft, submarine, helicopter, surface ship, land-based, man-carried, ground vehicle)

### Out of Scope

- Platform modifications
- Other weapon components and system components

- Rocket motor is considered the critical path
- Service-unique requirements drive delays in joint development and/or certification of rocket motors
- Opportunities exist to lean the rocket motor process
- Rocket motor study can pilot the new/revised process with JAGM project
- IPT members and SMEs will be supportive with resources and hold to the project schedule
- All components will be ready to integrate with rocket motor (i.e., platform, other parts of the missile to include the warhead and guidance, etc.)
- Policy and regulations can be changed, if necessary

#### Define

- Identify key players
- Perform stakeholder analysis
- Create charter
- High-level process

#### Measure

- Create detailed process maps
- Collect customer requirements and translate into design requirements
- Collect baseline data
- Prioritize requirements
- Benchmark organizations with world-class process/product

#### Analyze

- Generate concepts which meet design requirements
- Organize potential causes for existing process failures
- Select concept for further analysis and design
- Develop high-level design (blueprint)

#### Design

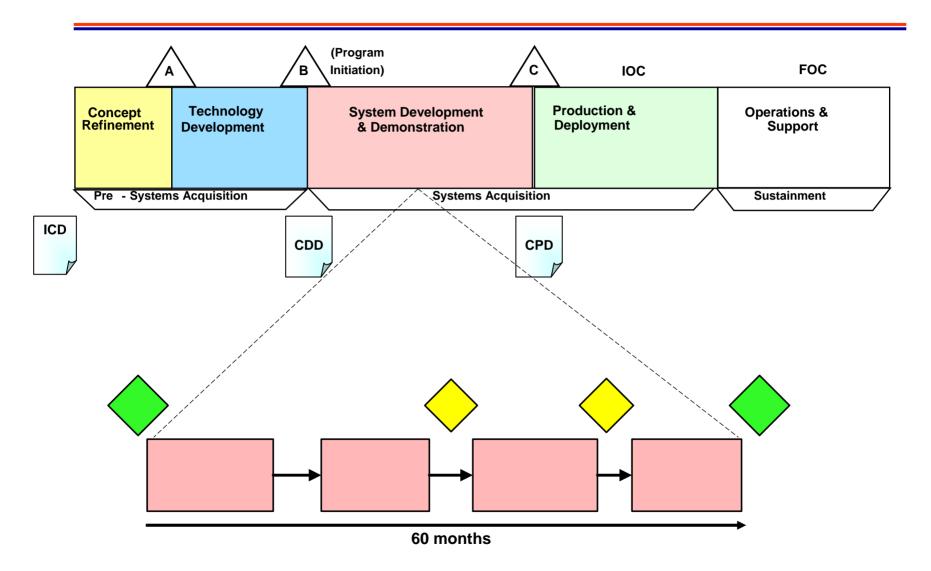
- Design detailed process/product
- Evaluate and select design/concept
- Test the design
- Pilot the design
- Develop pilot plan(s)
- Prepare for full-scale deployment

### Verify

- Pilot and validate the new process/product
- Implement the new design
- Train

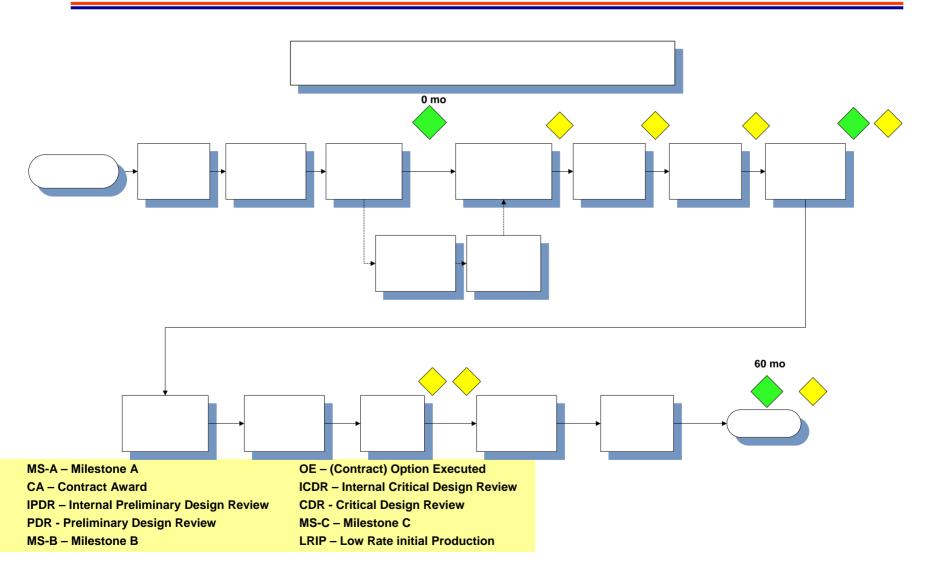
**Sep 08** 

- Close the project and release the team
- Prepare the project closure documentation
- Transition responsibility to the process owner


3 months 2.5 months 1.5 months 2 months

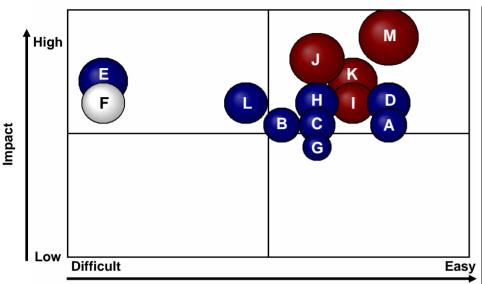


**IPT/Toll Gate Reviews** 




# Service-unique high-level processes developed






# Joint process for DoD tactical rocket motor development and qualification





# Recommendations were assessed by the team based on the impact to the process cycle time and ease of implementation.



**Ease of Implementation** 

#### Notes:

▶ Size of circle equates to cycle time impact

| Recommer           | Recommendation Impact – Implementation Quadrant Key                                                                     |    |  |  |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| Area of Impact     | Recommendation                                                                                                          | ld |  |  |  |  |  |  |  |  |
|                    | Include Safety and Testing Community Early in Process                                                                   | Α  |  |  |  |  |  |  |  |  |
|                    | Establish a Joint Rocket Motor Advisory Group                                                                           | В  |  |  |  |  |  |  |  |  |
| Risk<br>Reduction  | Require Successes and Failures be Reported in an Open Forum                                                             | С  |  |  |  |  |  |  |  |  |
|                    | Establish Criteria for technology and<br>Manufacturing Readiness Levels                                                 |    |  |  |  |  |  |  |  |  |
|                    | Coordinate end-to-end Modeling and Simulation                                                                           | П  |  |  |  |  |  |  |  |  |
|                    | Conduct Cost v. Performance Trade Study                                                                                 |    |  |  |  |  |  |  |  |  |
|                    | Prepare the Draft CDD before Milestone A to guide Technology Development Strategy                                       | Н  |  |  |  |  |  |  |  |  |
|                    | Form a team of Rocket Motor Manufacturing<br>Experts Between Government, Prime, and<br>Subcontractors to Review Designs | L  |  |  |  |  |  |  |  |  |
|                    | Issue technology Maturation Contract to 2 or more Qualified Rocket Motor Sources                                        | I  |  |  |  |  |  |  |  |  |
|                    | Establish Contract options for Prototype<br>Contract                                                                    | J  |  |  |  |  |  |  |  |  |
| Cycle Time         | Initiate Advance materiel Purchase for<br>Qualification during EMDD                                                     |    |  |  |  |  |  |  |  |  |
|                    | Conduct a Study on the System Developmental<br>Test (DT) and Operational Test (OT) and<br>Evaluation Processes          | М  |  |  |  |  |  |  |  |  |
| Product<br>Quality | Support the US Tactical Rocket Motor Industrial base                                                                    | F  |  |  |  |  |  |  |  |  |



The Rocket Motor Study included the 3 Services working independently for 6 months and together as one DoD team in July. In summary, the results and conclusions from the study are...

#### **Partial Study Results**

- Each Service defined their individual process for rocket motor development and qualification.
- A joint process for DoD rocket motor development and qualification was defined by the DoD team.
- The team formed recommendations which will improve the process cycle time, enhance decision making, improve product quality and capability, and mature technology, and reduce risk.

#### **Study Conclusions**

- Although the DoD rocket motor development and qualification process will take approximately 5 years, the process is less risky than the old rocket motor development and qualification process. The process is designed for the most expensive failures to occur early in the process.
- The DoD rocket motor development and qualification process is designed for joint rocket motor programs and single-Service or smaller programs.



# **Recommendations binned by IPT**

#### ☐ Implement

- B Establish a Joint Rocket Motor Advisory Group
- D Establish Criteria for Technology and Manufacturing Readiness Levels
- E Coordinate end-to-end Modeling and Simulation
- M Conduct a Study on the system Developmental Test (DT) and Evaluation and Operational Test (OT) and Evaluation process

#### □ Best practices

- A Include the safety and testing community early in the process
- G Conduct Cost vs. Performance Trade Study
- H Prepare the draft CDD before Milestone A to guide Technology Development Strategy
- L Form a team of RM mfg experts between the Prime, Government, and RM Sub to review Designs

#### □ Big picture item

F - Support the US Tactical Rocket Motor Industrial Base

#### ■ Need more work

- C Require successes and failures be reported (presented in a technical session or workshop) in an open forum
- I Issue Technology Maturation Contract to Two or More Qualified RM Sources
- J Establish Contract Options for Prototype Contract
- K Initiate Advance Materiel Purchase for Qualification during EMDD



- □ JAGM PM/PEO MsIs & Space assessing recommendations for implementation into JAGM and Army missile portfolio
   □ CCE maximum and two recommendations (MSC and DT/OT at an extension)
- □ SSE moving out on two recommendations (M&S and DT/OT study)
- □ Outreach (SE Forum in Oct, JANAAF, etc.)
- ☐ IPT will continue to monitor/advocate implementation of study recommendations



# **Back-up Slides**



### What worked very well

- Getting top-down leadership buy-in from the Services early-on in the process
- Getting outside contractor support for facilitation and administration
- Finding dedicated, hard-working and self-motivated team of SMEs
- Benchmarking

## □ Challenges

- Project duration keeping leadership attention and continuity
- Industry involvement
- Steep learning curve for many "outside of building" SMEs on our DoD processes

## ☐ Jury Still Out

Lean Six Sigma



# Each development effort for a rocket motor utilizes different design characteristics. The various characteristics of the design were identified for future analysis by the Navy.

|                            |     | pelant No. | die cat          | se Grain des                  | signi<br>note sity<br>note sity<br>spring sity | or ning | ating Stronics My Control Other                                                                                                                                                                                                                                                            | Rocket Motor             |
|----------------------------|-----|------------|------------------|-------------------------------|------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Rocket Motor  New Starts   | 8Kg | 40         | \ C <sub>0</sub> | \ \( \text{Cl. } \text{CO} \) | (d), ey, 0                                     | °/ &    | Other                                                                                                                                                                                                                                                                                      | (months)                 |
| MK 104                     | N   | M          | M                | N                             | N                                              |         | High volumetric loading, wanted as much performance as possible                                                                                                                                                                                                                            | 60                       |
| VLA                        | M   | M          | N                | 2                             | M                                              | N       | New technology; 1st fielded vertical ship launch missile                                                                                                                                                                                                                                   | 78                       |
| MK 72                      | M   | M          | <u>^</u>         | N                             | M                                              | N       | New geometry, high volumetric loading, highest mass flow rate; rocket motor that limits the vertical launch system design; built to the max limit to fit within the weight limit; heavily restricted so it could be launched from a ship; complicated TVC, short stubby nozzle (4 nozzles) | 108                      |
| MK 111                     | M   | N          | M                | N                             | N                                              | N       | New Rocket Motor Manufacturer Grain design caused 2 catastrophic failures. Difficult nozzle design                                                                                                                                                                                         | 77 + 35<br>for mini-qual |
| ESSM/<br>MK 134            | N   | M          | M                | N                             | N                                              | M       | Laser AFD; HTPE propellant (spent 10 years pre CA developing) large production mixes moisture sensitive & had to discard first batches of propellant; international program                                                                                                                | 48                       |
| TSRM                       | M   | M          | N                | N                             | N                                              | N       | Altitude control system; Composite case utilized spiral development                                                                                                                                                                                                                        | 117                      |
| Evolutionary               |     |            |                  |                               |                                                |         |                                                                                                                                                                                                                                                                                            |                          |
| AMRAAM +5                  | E   | E          | E                | M                             | M                                              |         | Extended rocket motor length by 5"                                                                                                                                                                                                                                                         | 23                       |
| Sparrow Mod 6              | M   | E          | E                | E                             | E                                              |         | New source of polymer (fire at Philips petroleum plant lost existing polymer)                                                                                                                                                                                                              | 26                       |
| Tactical Tomahawk<br>MK135 | M   | M          | M                | M                             | M                                              |         | Utilized known & proven technology simplified TVC, propellant                                                                                                                                                                                                                              | 48                       |



Modified technology

E Existing technology

| Define | Measure Analyze | Design | Verify |  |
|--------|-----------------|--------|--------|--|
|--------|-----------------|--------|--------|--|



# Each development effort for a rocket motor utilizes different design characteristics. The various characteristics of the design were identified for future analysis by the Army.

| Rocket Motor    | Pr | opellant W | orthe co | se Graine | esigni itti eriot<br>condexity igniseriot | Arrivos Lie | difference Other                                                                                                                                                                                                                                                                                                                | Cycle time            |
|-----------------|----|------------|----------|-----------|-------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| FGM-148 Javelin | M  | M          | M        | M         | E                                         |             | New Pressure relief system/launch tube burst disk & weight goals drove many design changes & risk                                                                                                                                                                                                                               | 39 mo<br>(CA to Qual) |
| NLOS B/S        | M  | M          | N        | M         | 2                                         | M           | NLOS B/S (boost sustained) -modified<br>Sidewinder propellant, bonded end closure<br>composite case new technology offers<br>significant cost savings, Use of EFI<br>technology in ISD                                                                                                                                          | 40 mo<br>(CA to Qual) |
| PATRIOT PAC-3   | Е  | M          | N        | M         | M                                         |             | PAC- was first tactically fielded composite motor case; performance requirements resulted in highest volumetric loading ever fielded for an Army tactical motor; grain complexity difficult to manufacture                                                                                                                      | 44 mo<br>(CA to Qual) |
| NLOS - Pintle   | M  | N          | E        | M         | m                                         | IVI         | Program Terminated: Dec 06 Pintle technology never fielded resulted in materials issues, weight and cost and choice of propellant; integrating pintle electronics with TVC also an issue; Propellant choice to lower flame temperature resulted in two propellants, both had issues eventually killing the pintle motor design. | 39 mo<br>(CA to CDR)  |







# Each development effort for a rocket motor utilizes different design characteristics. The various characteristics of the design were identified for future analysis by the Air Force.

| Rocket Motor Propellant Case Grain complexity Interfleen Device (Art) New Technology & Risk Factors |   |   |   |   |   |   |                                                                                                                                                                                                  |    |
|-----------------------------------------------------------------------------------------------------|---|---|---|---|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| New Starts Maverick (SR109-TC-1)                                                                    | N | N | N | N | N | N | New design                                                                                                                                                                                       | 36 |
| SRAM A<br>(SR75-LP-1)                                                                               | N | N |   |   | N | N | Aggressive new design: pulse motor, very high<br>burn rate catalyst                                                                                                                              |    |
| BLU-106                                                                                             | E | N | E | N | E | N | Small rocket booster for submunitions assembly                                                                                                                                                   | 27 |
| HARM<br>(YSR113-TC-1)                                                                               | N | N | 2 | Е | E | E | New design                                                                                                                                                                                       | 60 |
| AMRAAM<br>(WPU-6/B ATK)<br>Evolutionary                                                             | N | N | M | N | M | N | New baseline design, used new reduced smoke<br>binder (HTPB), Manufacturing validation issues                                                                                                    | 48 |
| Sidewinder<br>(SR-116-HP-1)                                                                         | N | M | M | N | M | M | Replaced Mk 17 (15 year age out) with new reduced smoke HTPB composite propellant                                                                                                                | 25 |
| Maverick RS<br>(SR114-TC-1)                                                                         | N | M |   | N | E | E | New non-metallized propellant formulation Second Source. Utilized boost and sustain                                                                                                              | 60 |
| AMRAAM<br>(WPU-6/B AJ)                                                                              | N | N | M | 2 | M | E | propellants; qual problems: insulation<br>unbonded; grain design problems, motor test<br>problems (ultrasonic testing of insulation<br>destroyed grain integrity; resulted in 12+<br>month delay | 60 |



Modified technology

E Existing technology



# The rocket motor design factors gathered in the Measure Phase were analyzed. As expected, the cycle time for the rocket motor process was less when using existing or modified technology.

| Rocket Motor                  | PK | pellarit Ho | The Cas | se Grain | sesignited lighter of senting the senting of the senting the senting of the senting the se | r ning<br>projest | teronic struc                                                                                                                                                                                                                                                                                        | Rocket Motor<br>cycle time<br>(months) |                                                            |
|-------------------------------|----|-------------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|
| New Starts                    |    |             |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Problem areas                                                                                                                                                                                                                                                                                        |                                        | Drivers                                                    |
| MK 104                        | N  | N           | М       | N        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -Catastrophic failure with nozzle - nozzle ejection problems<br>-Propellant - solids loading created a mfg challenge; unable to<br>make the propellant; needed innovative process to mix propellant<br>-Government requested extra performance in the same volume as<br>MK56 that was being replaced | 60                                     | Performance                                                |
| VLA                           | М  | M           | N       | N        | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | -Boot flap too long (fixed); TVC problem fixed; This was the last<br>government designed motor;<br>-Started at Indian Head and transitioned to private industry-Elkton<br>(qualified at Elkton); change in manufacturer                                                                              | 78                                     | 2 Sequential<br>Manufacturers                              |
| MK 72                         | М  | М           | М       | N        | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | -Mass flow rate too high; inadequate flow-down of requirements and integration to the launcher                                                                                                                                                                                                       | 108                                    | System integration                                         |
| MK 111                        | м  | N           | M       | N        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | -Two failed motors; grain design and nozzle problems (materials issue); igniter design did not work; hard prototype; used 2 sources; manufacturer had not developed a tactical RM previously; development contract was a fixed-price contract and cut corners after failures.                        | 77 + 35<br>for mini-qual               | Performance                                                |
| ESSM/<br>MK 134               | N  | М           | М       | N        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | -Developed a new propellant (moisture sensitive);<br>-Laser AFD failed in manufacturing (manufacturer did not know<br>numerous failure modes for manufacturing laser AFD)                                                                                                                            | 48                                     | IM improvement                                             |
| TSRM                          | М  | N           | N       | N        | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                 | -1st pulse motor in Service; 1st attitude control system; gas<br>generator; 1st wrap on case composite in Navy; spiral development<br>program (came from ASAT)                                                                                                                                       | 117                                    | Performance<br>Schedule                                    |
| Evolutionary                  |    |             |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                                                                                                                                                                                                                                                      |                                        |                                                            |
| AMRAAM +5                     | E  | E           | E       | М        | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -no failures and no new technology; manufacturer and location qualified the original AMRAAM; contract ran by China Lake                                                                                                                                                                              | 23                                     | Incremental<br>Performance                                 |
| Sparrow<br>Mod 6              | М  | E           | E       | E        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | -no failures                                                                                                                                                                                                                                                                                         | 26                                     | Factory burned<br>down; ingredient<br>unavailable, re-qual |
| Tactical<br>Tomahawk<br>MK135 | М  | М           | М       | М        | М                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | М                 | -minor problem with nozzle (changed nozzle design)                                                                                                                                                                                                                                                   | 48                                     | CO\$T<br>(less expensive)                                  |

Yellow highlight indicates a design factor that impacted the cycle time for that rocket motor

E= Existing/evolutionary

N= New technology; new type, family or way of doing things M= Modified Define Measure Analyze Design Verify