NORTHROP GRUMMAN

DEFINING THE FUTURE

R

Creating a Systems Architecture for
an SOA-based IT System as Part of a
Systems Engineering Process

Robert S. Ellinger, Ph.D.

Enterprise Architect

Gabriel Hoffman
Senior System Engineer

October 2008

Agenda ”W

e Service Oriented Architecture?

e Service Oriented Architecture and Investment-Driven SOA (ID-
SOA™)

e Creating a System Architecture for an SOA-based IT System

NORTHROP GRUMMAN

DEFINING THE FUTURE

Services-Oriented Architecture?

The Problem T

e IT organizations often focus on implementing technology
yet not enough on helping a customer organization
accomplish its mission

e Today's IT solutions tend to be based on COTS
architectures that often enforce specific business
processes and lack open technology upgrade paths

— Flexibility: Large-scale COTS applications have limits on their
configurability, so the application does not readily support the
organization’s continuously changing processes

— Technology Upgrade:. Upgrading or replacing technology is often
very difficult, that hinders the organization in achieving its
mission with the current IT technology

e Therefore, too often the organization conforms to the IT
needs, instead of IT conforming to what the organization
requires

SOA as a Solution varTrnor susacan

e Service Oriented Architecture (SOA) assists the organization with
focusing its IT on solving business problems
— Measurably links the applications to the organization’s processes to enable
the organization to understand the contribution of each application within

the process. This enables the organization to determine whether its
investment is worthwhile

— Provides “line-of-sight”
e From the Organization’s Mission through its Strategies to its Processes to
determine the optimal place for the next investment

e To support the intent of the Federal Enterprise Architecture (FEA), a concept
which is being incorporated into the DoD Architecture Framework version 2

SOA as a Solution vanrrancr ameesan

(Continued)

e The SOA enables the organization’s IT to support continuous
process change

— Existing “composite” applications can be reassembled to support a change
in the organization’s processes in a Continuous Operational and
Development Environment (CODE)

— The “Composite” applications are the Services and are assemble from
Service Components, each of which is a separate application (which may be
a Web Service)

e Each Service Component may be upgraded to new technology or replaced
independently

e These Service Components are assembled using a process flow which may
be redesigned independently of the components being used

ID-SOA™ womnor nuresan

e A good SOA process will help management to:

— Identify processes and IT systems that are producing minimal or no value
for the organization, that is, IT systems that are good candidates for
investment

— Recommend deletion or investment (by updates/upgrades or replacement)
— Execute projects that the customer has approved as IT investments

— Evolve toward a service-based business vision/model with the agility to
successfully respond to unexpected challenges and opportunities

e In other words, a good SOA process allows the organization to use
an IT investment process to optimize its processes and the
supporting IT systems and applications in a CODE

e Northrop Grumman’s Investment-Driven Service-Oriented
Architecture (ID-SOA™) is such a process

NORTHROP GRUMMAN

DEFINING THE FUTURE

The ID-SOA™ Process

Enterprise SOA R ———

Service

Development

Composite
Application
Lifecycle

Service Development:
Service Development
provides activities and
functions that support
the creation and testing
of Service Components

Execution Context
(Services Infrastructure)

10

ID-SOA™ Simplified High-level Flow

Enterprise SOA Created Here

>

NORTHROP GRUMMAN

s108l01d Map

Enablement Process

Enterprise Architecture Repository
(Supporting FEA & DoDAF)

&

Mission/Charter &
Strategy Driven

Measurement of the Business Processes & |T Sy Stem S

Investment
Process

NORTHROP GRUMMAN

DEFINING THE FUTURE

Creating a System Architecture for an SOA-
based IT System

The Composite Application Lifecycle e

Creating Systems Architecture—
This activity:

» Decomposes the Business
Process Model

Create « Derives the IT Functions
.“ required to enable and support
Sy_ S the process—creating the
Architecture “functional requirements”

« Structures the IT Functions to
optimize communications
among the functions and
minimize the number of
redundant functions

+ Allocates the Functions to
Components—creating the
“‘Component Requirements”

12

The Overall IT System Architecture Process ™=

Identify the

Customer’s
Requirements

The System Architecturei
Process!

Decomposition

e Decomposition includes:
»Process Modeling
»Functional Modeling

e Derivation Includes:

I
I
I
I
I
I
I
I
»Determining the IT I . .
Functions Required | Derivation
I
I
I
I
I
I
I
I

e Structuring/Allocation
Includes:

»Structuring and
grouping the Functions
to support the Process

> Assigning the Grouped
Functions to
Components

Structuring/
Allocation

13

14

The Overall System Architecture Process

High-fevef What Decomposition: Derivation: Structuring/Affocation
SRD (FRD) (Deta‘ifed.Whatj (High-LevelHow) (Serw"ce Ffmcﬁona)’ Design)
Busi Communications Communications
usiness g g
P Diagrams (of —_—— ————— Diagrams (of —_—
rocesses :
Processes) | Services) |
races ossible Feedback when Refactoring ; : : i
To Actr=s Combining Service Components Cagram -I ngmal (Seryiee) Logical (Service)
i ctar => I Functional Components Functional Components|
SwimiLane Level 1 I _ Message \ 4
e | Activity Aty => = Method z B
Cases ; A I Mepsage Message QFD and Graph 1
Evenf Flow Diagram i => Method Analsysi o
=> Apfivities Decompose | nalsysis
; I Class " /
Recursive J Diagram Minimum set of Logical __
SEE Decomposition (Level 2+ {(Functional) Components
c ef'g_':n Activity
onstraints Diagrams v
% e Must Meet (Constraining the How) Dynqmic
Functional
Unallocated Design Constraints (MUST MEET == MOd_elmg

Class
Diagram

LFLD and
Graph
Analsysis

UML Diagram as
output of Activity

Non-UML
Diagram as
output of Activity

Process Flow
Feedback Loop

l

Allocate Design
Constraints To
Service Comp.

|

SAD (SDD)
e Functional Design
e Service Component Design

NORTHROP GRUMMAN

The System Requirements Document (SRD)

Used as Inputs (Tab

NORTHROP GRUMMAN

e of Contents)

1 Introduction

1.1 Purpose

1.2 Scope

1.3 Background

1.4 Identification

1.5 Rapid Implementation Approac
1.6 Document Change Management
1.7 Referenced Documents

2 System Context

2.1 Organizational Mission, and Strategies
2.2 System Scope

2.2.1 In Scope

2.2.2 Out of Scope

2.3 Business Processes
2.3.1 BP1
2.3.2 BP2
2.3.3 BP3
2.3.4 BPi
2.3.5 BPn
3
3.1
3.2
3.3 Use Cases

Use Cases
Actors

15

High-fevel What
SRD (FRD) 4 Design Constraints
Business 4.1.1 Size and Location of User Community
» Processes 4.1.2 Interfaces
/ Traces 4.1.3 Customer Furnished or Identified Components
T|° Acte 4.1.4 Data Base
Swin
Use 7/ 4.1.5 System Transition
Cases

4.1.6 Training
4.1.7 General Computing Controls & Security

/4

/| 4.1.8 Business Continuity (COOP)
Design aop
Bonckdirts 4.1.9 Performance and Availability
4.1.10 Information Retention/Purging/Archiving
] 4.1.11 Other Constraints

Use Cases Identified by Actor, Business Process, and Release

4.1.12 Hardware and Software Standards
4.1.13 Communications and Network

4.2
4.2.1 Architectural Constraints
4.2.2 Scalability

4.2.3 Reliability/Availability

4.2.4 Service Infrastructure

Customer IT Standards Constraining the Design

4.3 Outside Standards and Specifications Constraining the Design
5
Appendix A: Acronyms, and Abbreviations

System Validation

Appendix B: Glossary

NORTHROP GRUMMAN

The Decomposition Activity

Objective: To define processes and activities in sufficient detail to allow the

derivation of IT functions to support the process

(=

Decomposition:
{(Detaited What)

Communications
Diagrams (of
Processes)

Activity

Flo Diagram

ivities

Recursive
Decompositj

Diagrams

Must Meet (CO

A
evel 2+
Activity

OV o

T

~a Submission
’\DO

Re-send IAFIS

“tibmission

/

_ =

Systems have a response
to return to the Submitter

NORTHROP GRUMMAN

Derivation

Objective: To determine what IT Functions are required to enable and
support the processes and activities determined in decomposition

Derivation:
(High-Level How)

IT Classes (Services
and Service gsourceJni - JNistpack
targetIni : Nistpack
Con_1p0nents) ar_e Q}satl)rgrecegath : g:ﬁ:g
derived from objects StargetPath : String

= &Discrepencies[] : Discrepancy
in the process

NistCompare

Sequence
Diagram
=

psage Message

Class
Diagram *ctor{Source : String, Target : String)

*compareNist()

&FcompareText{Source : JNistpack, Target: JNistpack, RecordNum : Integer, Index : Integer)

& comparelmage(Source : JNistpack, Target: JNistpack, RecordNum : Integer, Index : Integer)

/ /;EA : NistCompare source : ta_rget: : : / \
I g JNistpack JNistpack Discrepancy DiscrepancyCollection Discrepancy prsr—
Ul y) .
ﬁ < (flom DDD3.3 Logical Data Model) JNisfpack
o ctor() &ID : Long .
Initialize: || readverification(flename) &y SubmissionID : Long \ ctor()]])
readTransaction(filename) &pRecordNum : Integer “readVerification(filename : String)
T — &pIndex : Integer *readTransaction(filename : String)
o) L= S Type : Discrepancy Type *getRecord TypeCount() : Integer
readVerification(filgname) "’getlmage(): Byte[]
readTransaction(filgname) /"CtOI’O ‘f N ;
indftem() : String
compareNist() / ” /
For each comparelmage(Source, Target, RecordNum, Index)
mege: getimage() <<enumerations>>] <<entity>>)
If discrepency: cior() DiscrepancyType D|SCrepanCy.CO||ect|On
: - / (from DDD3.3 Logical Data Model)
7 &Equal : Integer=0 & =
H Iscrepancies|] . LIscrepanc
For each compareText(Source, Tatget, RecordNum, index) Q?Addltlon &P pancy
Text Field: finditem() / Q’Om|SS|0n Yget Discrepancies()
S Difference %storeDiscrepencies()
If discrepency: ctor(//
\ storeDiscrepencies() \

Structuring and Allocation: Step 1 e

Objective: To Structure and group IT functions into Services to:

e Minimize the number of redundant functions

e Optimize the grouping of IT functions for allocation

e And to Allocate the grouped functions to actual service components

Structuring/Aflocation
onalDesign)

_ Communications

' Diagrams (of —_—
Services) /) |

S

E

Logical (Service)

1
e % 3
Functional Components Logical (Service)

unctional Components

QFD and Graph |
Analsysis

i

Minimum set of Logical
(Functional) Compaonents

Jq

Dynamic
Functional
Modeling

= SIS)
v
e\
Allocate Design
Constraints To

Service Comp.

v
SAD (SDD)

e Functional Design

e Service Component Design

18

Step 1: Structure Classes with
Communications Diagrams
Objective: Determine tightly and loosely
coupled classes (and functions)
e Step 1.1 Create Communications Diagram
— Initiate by Duplicating IT portions of Activity
Diagrams as Communication Diagrams
— Two Top-level Classes:

> Service
> Process Flow

Structuring and Allocation: Step 1 e

SiEg g Alasaicn LQV?l 2 — Seq. Pia': Stage AP o*

Class Diagrams
= = S e i
_ Communications N e — ‘Submission <eintertansss
' Diagrams (Uf — (trom DEE3.3 Logical Cata Model) IBiometricSysterm
i | nisolay %D Long N
Services) l “ ") SeTCN: Sting receieSH TP Subrrission(stbmission : Submission)
\ S Type : Sting *receivedF TP Submission(submmission : Subrissior)
' \ :Submned‘rim:Date .rene_weMemaSuhmsamn(smmssmn Submission)
Logical (Service] § (Subrission - blob receieliF ISResponsefesponse | WFISResporse)
gical () Logical (Service) J \ ~ T A+
Functional Components F tional Components \ receiveRespinse(response “ABISResponse)
) gl rom DDD3.3 Leffleal Data Modsl B T e -
H{®D : Long ABISProg [N W e
H QFD and Graph H % Susmis; _P\D _BngTE :pnmary:lEliumetricSyﬁem o % N
i . Resp e Dal secondary - IBiometricSystemn . N
d AnalsyS|s A\ %Respﬁ biob E—{Seoperationi ode | Operatiort ode .
Ext APO Display) “Prirnary
Coroles) Lt e e = sendSMTF issionisubmission : Swmission Jbrmitter . NGIC-AMS
Minimum set of Logical ool - cnumeration=> % ofj#*copySFTPSubmissionaubrission - SLbmissior) .
" sive IAFIS OperationMode {2 copyh ediaSubmission(subrrission | Subrmissior)
(Functional) Components] £ APO=D &< & sendlaFISResponselresponse - IAF ISResponss)
Seecied da processed R e - SEPO -1 & oy 2 queueSubrission(submission: Subrrission)
prNGAES Lo “Response. Rosponse - 5[# BLBIA ISResporEs [espnnse | AFISResns)| Wachl istDistribution
— oy / i o ElzRes; Easlead]
= o et submssion |
Dynamic e | P
Functional peringhere
_ Modeling
g

INputs to Communigations Diagram

pomm—
Allocate Design
Constraints To
Service Comp.

v /
SAD (SDD)

e Functional Design
e Service Component Design

Submission =
Ophode —»

Store IAFIS Submission | Receive IAFIS Response |

< |AFIS Response

| Store Match Response |

{Reveive Match Response|
*Asynchronous Parallel Operations

< Response

19

Structuring and Allocation: Step 2

NORTHROP GRUMMAN

Objective: To Structure and group IT functions into Services to:

e Minimize the number of redundant functions

e Optimize the grouping of IT functions for allocation

e And to Allocate the grouped functions to actual service components

20

Structuring/Affocation

(Service FunctionaiDesign)

Communications
Diagrams (of —_—
Services) |

Logical (Service)
FunctiogglCarmponents Fu

7 ¥ N
‘ QFD and Graph ||
Analsysis '
N 7

Minimum set of Logical
(Functional) Compaonents

Logical (Service)
e

— 4

Dynamic
Functional
Modeling

SIS)
v
e\
Allocate Design
Constraints To

Service Comp.

v
SAD (SDD)

e Functional Design

e Service Component Design

nctional Components

Step 2: QFD and Graph Analysis

Objective: Determine the minimum number
of Logical Service Components Required

e Step 2.1 Graph Analysis—Analysis of
Communications Diagrams

e Analysis Principles Include:
—Noting where one class communicates only with
one other class or a small group of classes
—Noting where there is one or two links between
groups of classes

e Step 2.2 Quality Functional Deployment
Analysis

Structuring and Allocation: Graph Analysis 7o eses

Service Candidates are

21

tsos Pt Do identified by base
- C‘L’?a";‘,‘;}'::‘(';"s _ grouping or clustering
e | of functions and

Logical (Service)
Functional Components

1
Logical (Service)
Functional Components

. | arD4 @» —
d Anal

Minimum set of Logical
{Functional) Components

communications
interfaces

[Seleced data processed
by NG-ABIS 1.0

Interface used here

\\
Dynamic
Functional
i Modeling
, / Parallel Operations Service \
Allocate Design Submission =
Constraints To OpMode —»
Service Comp.
] Pre-Process Queue }—{ Process Queue T
| | . Send Submission |
v

SAD (SDD)

e Functional Design
e Service Component Design

+—Ophode
< Submission

foF1S Response

Send |AFIS Response |

| Portlet Display —— Decision Control

< Response

Store IAFIS Submission - Receive IAFIS Response |

< |AFIS Response

K | Store Match Response | |Reveive Match Response|
< Responsz /

Structuring and Allocation: QFD Analysis

Quality Functional

(

22

Structuring/Allocation
(Service FunctionalDesign)

Communications
Diagrams (of

Services) |

Logical (Service)
Functional Components

‘ d Graph
Isysxs

Minimum set of Logical
Functional) Components

Dynamic
Functional
Modeling

Service Con

A 4

Deployment analysis

"The House of Quality”

is common sense with

a template

|
Logical (Service)
Functional Components

NORTHROP GRUMMAN

A
“Roof” added to

determine level of
service (functional)

SAD (SDD)
e Functional Design
e Service Component Design

++ = high correlation

+Activity from Activity Diagram
*Service from Communications Diagram

redundancy
X
v
Note: QFD analysis is Service* " . c |us
generaIIy used to S 8o 2.1 22 .
)) — —_— .= O
nn or— U.gg o Uge SES 3 _ly
'” _,Jlr'-erV’ ec’.’ ,S Sa&
ht.-]ul’nena, LILI s T =" e et ,
used here to E.e.ﬂd meic + ++ |
. N I 3 ‘m“‘ ‘n .!-‘-““7‘74 . . .
e | - ining| activitie:
e orma lzatl@ LG | aGLIVITIeS:
. Where services are Rec. IAFIS
highly correlated Response
leading to redundant Rec. Match
services Response
Store IAFIS
Response
|
- etc.
1
+ = some correlation v

23

Structuring and Allocation: Step 3 e

Objective: To Structure and group IT functions into Services to:

¢ Minimize the number of redundant functions

e Optimize the grouping of IT functions for allocation

e And to Allocate the grouped functions to actual service components

L 2
Dynamic
Functional
— Modeling

Structuring/Alfocation
(Service FunctionaiDesign)
Communications
Diagrams (of —_—
Services) |

Logical (Service)

s ol
Functional Components F Logical (Service)

QFDandGraph | |
Analsysis

Minimum set of Logical __
(Functional) Compaonents

v

Allocate Design
Constraints To
Service Comp.

v
SAD (SDD)

e Functional Design

e Service Component Design

unctional Components

Step 3: Dynamic Service/functional Modeling

Objective: Use simulation to verify, within a
confidence interval, that the functional
model will meet the customer’s system
requirements

e Currently, the SOA and SA tools suppliers
do not support this activity to the degree
required by SOA

24

Structuring and Allocation: Step 4

NORTHROP GRUMMAN

Objective: To Structure and group IT functions into Services to:

e Minimize the number of redundant functions

e Optimize the grouping of IT functions for allocation

e And to Allocate the grouped functions to actual service components

Structuring/Affocation

(Service FunctionaiDesign)

_ Communications
' Diagrams (of —_—
Services) |

Logical (Service Logical (Service)

Functional Components

|
QFD and Graph |

d Analsysis

Minimum set of Logical
(Functional) Compaonents

Dynamic
Functional
Modeling

Allocate Design
Constraints To
Service Comp.

v
SAD (SDD)

e Functional Design

e Service Component Design

Step 4: Allocation of Services/Functions to

Objective: Allocate the services/functions to

)
Functional Components

e Step 4.1: Assign Design Constraints to

e Step 4.2: Perform Tradeoff Study

Actual Components

components using a make/buy/use tradeoff
study procedure

Proposed Components

— Make—the team develops the service component

— Buy—the service component is purchased from a
software supplier

— Use—the team discovers and uses a service
component in the SOA Ecosystem (across the
Internet

25

Results to Date vanror ameesan

The team has completed the Systems Requirements Document (SRD) to
establish the requirements baseline with the customer. This includes:

— Identifying the processes and activities (in the form of use cases)

— Identifying the design constraints

The team has decomposed the requirements in the SRD into two levels of
Activity Diagrams to define the “detailed what” with the customer. This was
delivered as the System Design Document

The team derived the IT functions by translating the detailed Activity
Diagrams into Sequence and Class diagrams

The team then allocated these into the specific components (COTS, existing
software, new software, server scripts, hardware, and networks) to create
the detailed design. This was integrated into the Detailed Design Document
and presented to the customer for a very successful Critical Design Review

NORTHROP GRUMMAN

DEFINING THE FUTURE

Questions?

27

Contact Information

e Robert S. Ellinger, Ph.D.

— robert.ellinger@ngc.com

e Gabriel Hoffman
— qgabriel.hoffman@ngc.com

NORTHROP GRUMMAN

mailto:robert.ellinger@ngc.com
mailto:gabriel.hoffman@ngc.com
mailto:gabriel.hoffman@ngc.com

NORTHROP GRUMMAN

/////;;FINING THE FUTURE

