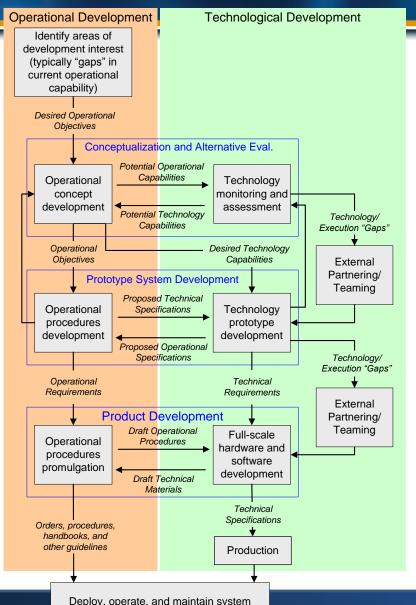


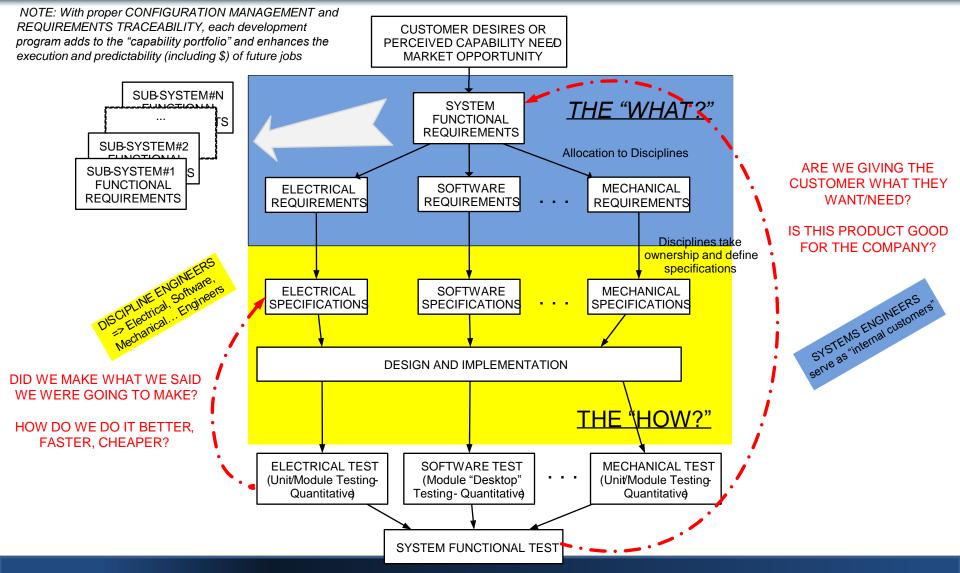
Crucial Factors in the Design of Net-Centric Systems


Dr. David Hernandez Director of Advanced Systems Engineering Tactronics Holdings, LLC

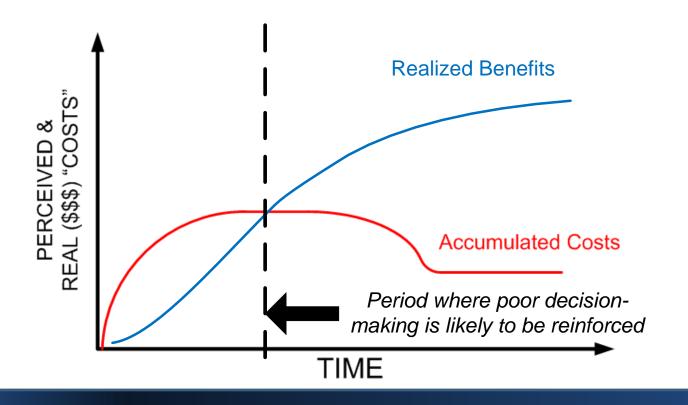
Creating a Tech/Product Pipeline

PRODUCT DEVELOPMENT – ENGINEERING PERSPECTIVE

• Goal: To create a disciplined engineering framework which supports customer focus, sustained innovation, and quick time-tomarket



- The Two Components of Success:
 - "Doing the right things" and "Doing things right"
 - Focus and Execution



Systems Engineering – Divide and Conquer

- Implementing a Disciplined Engineering Framework will initially make things appear qualitatively "slower", "harder", "more bureaucratic", "less responsive"...
- The "startup costs" associated with this approach can often elicit significant resistance from staff and management, however the cumulative effect is a more efficient organization and quicker speed to market

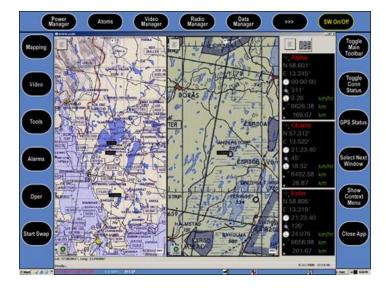
- Goal of "Net-Centricity": Get the right information to the right decision-makers at the right time, irrespective of physical/organizational boundaries
- Net-Centric Operations aim to provide:
 - Shared situational awareness across the battlespace, resulting in:
 - Increased ability to self-synchronize & self-task resulting in:
 - Increased agility in executing the mission and carrying out "commander's intent"

- Systems Engineering entails:
 - Defining desired customer/stakeholder capability
 - Defining specific system requirements
 - Allocating those requirements to specific subsystems/software modules

- In the case of Net-Centricity, the "sub-systems" we seek to integrate may already exist
- Consider the much-maligned "stovepipes":
 - Represent investment in developing technologies/platforms to carry out specific tasks effectively, sometimes refined over years of field deployment
 - Represent significant resource expenditure in training personnel to use these tools
 - Net-Centric sub-systems may be separated by great physical distance, but more importantly, "virtual distance"
 - Technologies underlying Net-Centric capabilities communications/information dissemination – are relatively dynamic compared to other technologies ("internet pace")

- In the case of Net-Centricity, the "sub-systems" we seek to integrate may already exist
- Consider the much-maligned "stovepipes":
 - Represent investment in developing technologies/platforms to carry out specific tasks
- Leverage existing capabilities refined over years of field
- Represent significant resource expenditure in training
 Leverage existing personnel familiarity
- Net-Centric sub-systems may be separated by great
 Respect differences cadapt to the mission need "virtual distance"
 - Technologies underlying Net-Centric capabilities –
- Take advantage of changes in technology as they come, on-the-fly latively dynamic compared to other technologies ("internet pace")

- Approach:
 - Leverage components that have been developed, deployed, and refined through field testing
 - Maximally leverage knowledge and training that is in place to get capabilities into the field quicker
 - Account for differences across user groups, rather than forcing adaptation, by allowing for tailoring to specific use cases
 - Make systems extensible to incorporate new capabilities


This Approach Applies Across Technology Areas

- Tactronics' Products Areas Where this Approach to Systems Engineering is Being Applied:
 - Fixed Computing/Processing
 - Human-Machine Interfacing and Displays
 - Mobile Computing
 - Navigational/Mapping and Sensor Processing
 - Networking Infrastructure
 - Power Management
 - Radio Management
 - Specialized Data Manipulation/Transport
 - Audio Intercommunications
 - Beyond-Line-of-Sight Communications
 - Data Acquisition/Monitoring (including Platform Telemetry)
 - Radar Processing/Display
 - Video Processing/Manipulation
 - Networked/Fixed Storage Devices

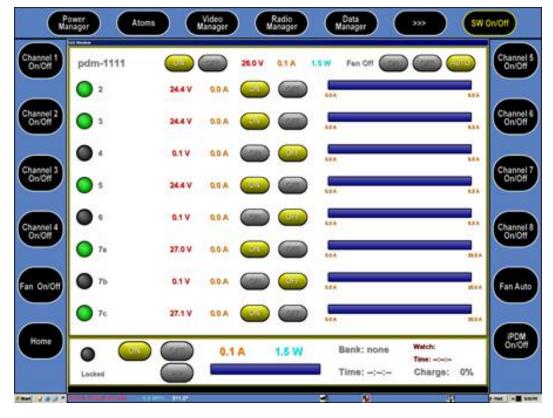
Example: "Off-the-Shelf" Software

10/08

Case Study: Computing/Displays

Case Study: Data Distribution

Case Study: Radio Management



	Manager ip Select Radio	Data Radio	916 Help				101
Radio 1-NY57LOSNET 117E				Radio 5-HPWNET2A 117F			
TX:		KG-84	TEK: 2	TR		NG-84	TEK: 1
FOK:		FM	Auto ADF	FOC: .	249.00500	HPW	Data
Pow: 1	LOS	Vol: 9	Tone	Pew: 2	Satcom	Vot 9	None
Radio 2 KGB4LOSNET 1175				Radio 6-HPWNET28 117F			
180		NG-84	TEK: 1	TR		NG-84	TER: 1
FDC:	310.00000	FM	Data	Rot		HPW	Data
Pour: 1	LOS	Vol: 9	Tone	Pow: 2	Satcom	Vol: 9	None
Radio 3-HPWNET1A 1177				Radio 7 KYS7LOSNET 117F			
DC:	311.15000	KG-84	TEX: 1	THE	310.00000	NG-84	TER:2
FOX:		HPW	Data	ROC _	310.00000	TM	Auto ADF
Pow; 2	Satcom	Vot: 9	None	Pew: 1	LOS	Vol: 9	Tone
Ratio 4-HPWNET1B				Radio 8-KG84LOSNET \$17F			
DC:	257.55000	KG-84	TER: 1	10è	310.00000	KG-84	TER: 1
FDK:		HPW	Data	FOC:	310.00000	FM	Data
Pow; 2	Satcom	Vol: 9	None	Powc 1	1.05	Vot 9	Tome

Case Study: Power Distribution

Case Study: Systems Integration

Any or All Components Interchangeable / Upgradeable

Standards-Based Computing & Networking Components

Operation In Multiple Rugged Environments

"Shopping List" For Integrated System Solutions

Platform Immaterial Common Line Replaceable Units For:

- Man Portable
- Vehicular Platforms
- Maritime Platforms
- Rotary Wing Aircraft
- Fixed Wing Aircraft
- Forward Staging Bases FSB's

ANY QUESTIONS?

Contact Info: dhernandez@tactronics.com