

Predictive Modeling: Principles and Practices

Rick Hefner, Dean Caccavo Northrop Grumman Corporation

Philip Paul, Rasheed Baqai Unlimited Innovation, Inc.

NDIA Systems Engineering Conference 20-23 October 2008

Background

- Predictive modeling relies on historical program performance data (predictive analytics) in conjunction with a forecasting algorithm model to predict future outcomes
 - Ranges from simple extrapolation techniques to sophisticated Neural Network based models
- This presentation will discuss the principles of predictive modeling, outline the fundamental methods and tools, and present typical results from applying these techniques to project performance

Agenda

- ✓ What is Predictive Analysis?
- Recent Trends
- Application to Program Performance
- Pilot Results and Feedback
- Summary

What is Predictive Analysis?

Could this network packet be from a virus attack?

- Predict likelihood of the network packet pattern
- → Anomaly detection (outlier detection)
- Similar questions:
 - Are the hospital lab results normal (Adverse drug effect detection)
 - Is this credit transaction fraudulent? (fraud detection)

Will this student go to college?

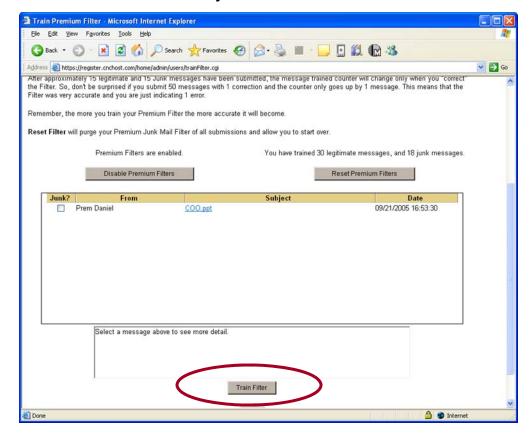
- Based on Gender, ParentIncome, ParentEncouragement, IQ, etc.
- E.g., if ParentEncouragement=Yes and IQ>100, College=Yes
- → Classification (prediction)
- Similar questions:
 - Is this a spam email? (spam filtering)
 - Recognition of hand-written letters (pen recognition)

What is the person's age?

- Based on Hobby, MaritalStatus, NumberOfChildren, Income, HouseOwnership, NumberOfCars, ...
- E.g., If MaritalStatus=Yes, Age = 20+4*NumberOfChildren+0.0001*Income+...
- → Regression (prediction)

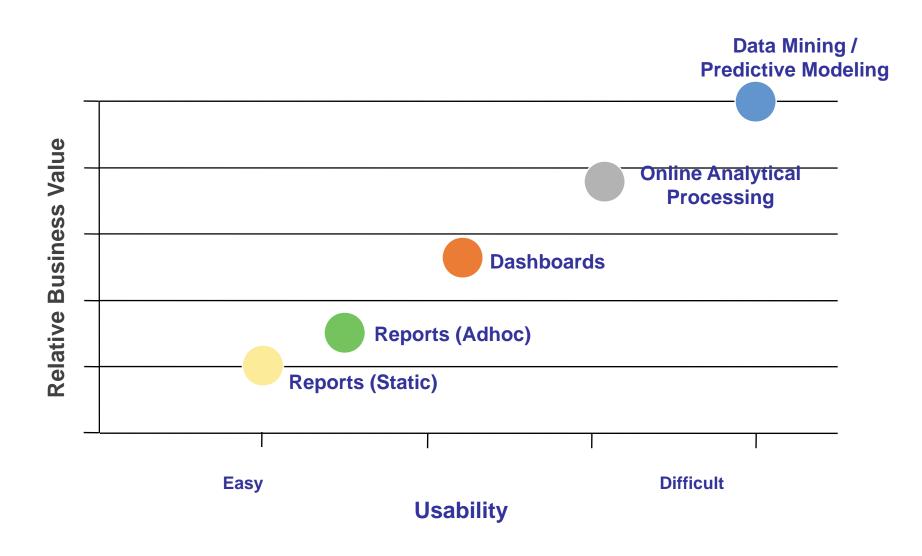
Agenda

- What is Predictive Analysis?
- ✓ Recent Trends
- Application to Program Performance
- Pilot Results and Feedback
- Summary

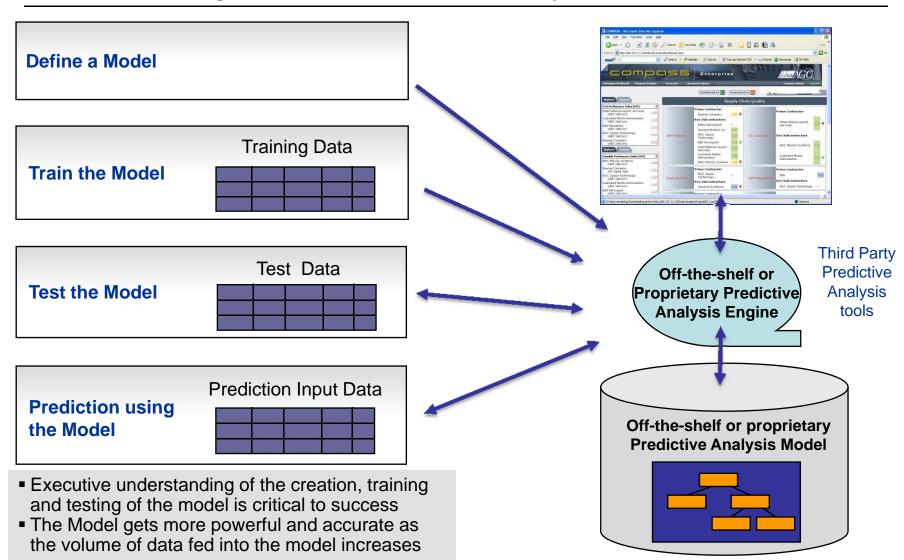


Predictive Analysis Trends – Adoption is on the rise

- Predictive Analysis is becoming more prevalent and integrated in business applications
 - Example: Disease management and evidence based care, based on historical diagnosis and procedure codes of patients
 - Example: E-Mail filtering using predictive analysis
- Predictive Analysis algorithms are being integrated into existing databases, data mining tools
 - Example: Microsoft SQL Server 2005 has predictive analysis algorithms


Example:

Premium predictive analysis based filtering on email, available to any e-mail user



Predictive Analysis Trends – Tools are becoming easier to use

Predictive Analysis Trends – Model development is more structured

Predictive Analysis Trends – Algorithms are available for use

Decision	Trees Haive B	avesian Clusteri	ng Seduentia	Clustering Time se	ite ⁵ Associ	Agiron rules	activorit
1	2	2	2		2	1	Classification
1	2	2	2			1	Regression
		1	1			2	Segmentation
1	1	2	2		1	1	Association Analysis
		1	1			2	Anomaly Detect.
			1				Sequential Analysis
				1			Time series

1 - First Choice

2 - Second Choice

Data Mining Vendors & Tools

- SAS (Enterprise Miner)
- IBM (DB2 Intelligent Miner)
- Oracle (ODM option to Oracle 10g)
- SPSS (Clementine)
- Insightful (Insightful Miner)
- KXEN (Analytic Framework)
- Prudsys (Discoverer and its family)
- Microsoft (SQL Server 2005)
- Angoss (KnowledgeServer and its family)
- DBMiner (DBMiner)
- Many others

Agenda

- What is Predictive Analysis?
- Recent Trends
- ✓ Application to Program Performance
- Pilot Results and Feedback
- Summary

Mission Assurance Continuum

Program Performance Oversight

Industry Minimum

Proactive Program Management Program Portfolio Management

Program Analysis Reporting

Industry Best Practice

Reports based on current and passed performance data of portfolio programs, programs, and subcontract reports

Predictive Program Health

Industry Innovators

Predictive Analysis based on Program Performance Modeling

Approach and Scope

- Self reported Program Portfolio includes critical and high visibility programs
- Standard Program Management Metrics collected on a periodic basis
- Self Reported Program metrics collected periodically and at specific program milestones
- · Reporting analysis performed as needed
- Self reported program metrics, organizational data, personnel data and customer reported metrics collected at regular intervals
- Predictive models developed using historical data (leading indicators rationalized)
- Models validated against historical data
- Holistic enterprise wide approach to program execution
 Models continually refined using current
 - Models continually refined using current program performance data
 - Sophisticated predictive measures provided to programs and enterprise

Infrastructure and Breadth

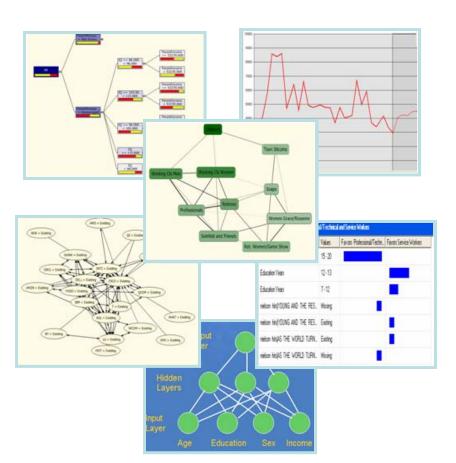
- Program data maintained by individual programs
- Summary information provided to enterprise repository

Data Requirements

- Very few metrics collected from programs
- Key program metrics (cost performance, schedule performance, technical performance, CPI, SPI etc.)
- Standardized program taxonomy information like customer, contract type.

- Program data collected periodically into an enterprise-wide program management repository
- Program, Enterprise and Subcontracts performance reports available
- 25 100 metrics collected from programs
- Key program metrics collected at all specified Program Milestones.
- 50 75 metrics collected from programs and refined to include only the few relevant metrics
- Adaptive approach to qualitative and quantitative performance indicators
- Direct and Indirect metrics collected for the programs; qualitative information is mined
- Proactive responses based on predictive analysis of ongoing and historical performance

Overarching Objectives for Predictive Modeling


- Provide program management staff with Predictive Models to "test-their-gut" against enterprise experience data before making strategic program decisions
- Develop Predictive Models that provide insight into identifying "headlight metrics" that influence Schedule and Cost realism during program execution
- Leverage existing enterprise information to develop Predictive Models for programs
- Ensure that models are extensible and automatically calibrated with additional data from the program and enterprise

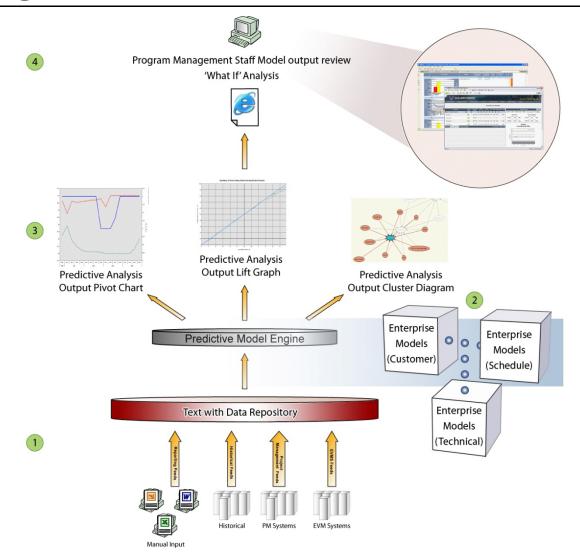
Potential Areas for Predictive Analysis

Potential Predictive Analysis Models for Program Management and Subcontractor Management

- Schedule Risk at WBS level based on past performance
- Cost Risk at WBS level based on past performance
- Technical Risk at WBS level based on past performance
- Spending and staffing profile for the program life cycle
- Subcontractor risk profile based on past performance
- Sub-tier quality at subcontract and WBS level
- Defect/Aberrations for the program life cycle
- Mission Assurance models based on program category

Predictive Analysis Algorithms

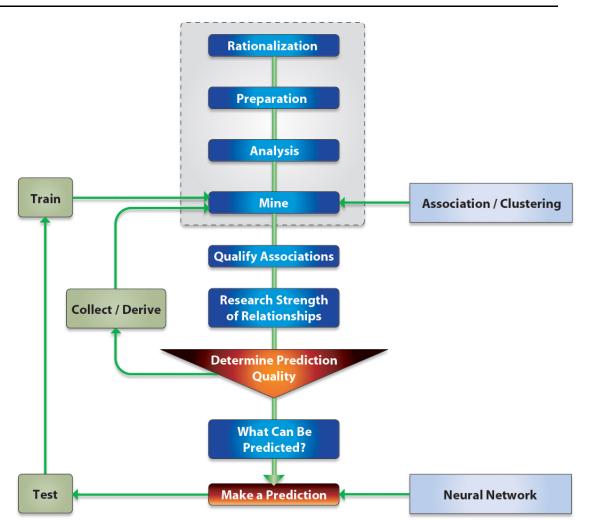
- Decision Trees
- Naïve Bayesian
- Clustering
- Sequence Clustering
- Association Rules
- Neural Network
- Time Series
- Custom Model

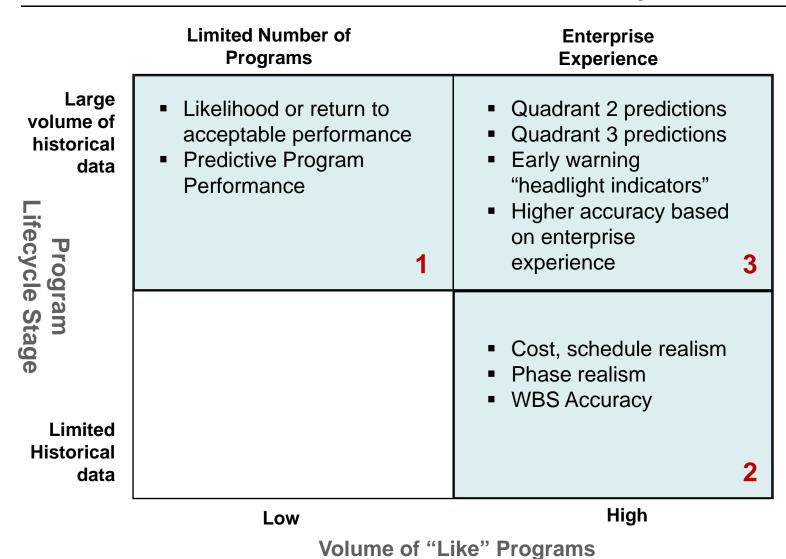


Predictive Analysis High Level CONOPS

- 1) Enterprise data is mined and analyzed
- Enterprise models are defined by Analysts
- Enterprise model outputs are defined by Analysts and customized by PM staff
- PM staff use models interactively

Key Benefit:


Leverages enterprise
experience data and
sophisticated algorithms
into predictive models for
cost and schedule realism
checks during program
execution


The Predictive Modeling Process

- Explore the Data
- Understand Data Relationships
- Derive/Enhance the Data
- Use the Data to Predict
- Train the Model

What can be Predicted with Reasonable Accuracy?

Agenda

- Background
- Industry Trends
- Application to Program Performance
- ✓ Pilot Results and Feedback
- Summary

Predictive Modeling Pilot Objectives

- Provide program management staff with Predictive Models to "test-their-gut" against enterprise experience data before making strategic program decisions
- Develop Predictive Models that provide insight into identifying "headlight metrics" that influence Schedule and Cost realism during program execution
- Leverage existing enterprise information to develop Predictive Models for programs
- Ensure that models are extensible and automatically calibrated with additional data from the program and enterprise

Pilot Approach

- Analyze and rationalize the available enterprise data
 - Enterprise Level Office of Cost Estimation and Risk Assessment (OCERA) data
 - Division Level Stoplight Program data
 - Program Level Program Review Authority (PRA) data for relevant programs
- Develop predictive modeling approach to provide schedule and cost measures during program execution phase
- Develop preliminary predictive models using appropriate algorithms and mining existing enterprise data
 - Mining Clustering, Decision Trees and Naïve Bayesian Algorithms
 - Predictions Neural Network, Bayesian Algorithms and Clustering
- Get Pilot participation from three representative program types:
 - Large Scale System Integration Low Rate Initial Production program
 - Medium Sized Software program
 - Small IT System (Software and Hardware) program

Key Benefit: Leverages enterprise experience data and sophisticated algorithms into predictive models for use during program execution

Data analyzed for developing preliminary models

Data	Stoplight	OCERA	PRA
Data Period	2.5 years	5 – 6 years	Past 4 months
Frequency	Quarterly/Some older data is monthly	Major milestones or annually	Monthly
Breadth and depth of data	Monthly snapshot of key metrics	Very deep, very broad, with significant contextual information	Very deep, mostly snapshot without significant contextual information
Approximate number of data elements	~ 20	~ 70 key attributes	~40 key attributes

Analyzed enterprise level (OCERA), division level (Stoplight) and program level (PRA) data

Some Actual Data Types Used to Develop Predictive Model Relationships

Program Data

- Contract Type
 - CPAF, FFP, CPFF
- Type of Program
- Period of Performance
- Number of Milestones
- Number of sub-contractors
 - Subcontract value
 - Subcontract performance
- Total Value
- Annual Sales
- Number of incremental deliveries
- Average staff count
- SPI, CPI
- EAC, BAC
- Number of EAC changes
- Number of ECR/ECP
- Defects
 - Injection by phase
 - Occurrence by phase
- Skills Data
- Program Review Data
- Project Initiation Review Data

Program Self Assessment

- Monthly Ratings
 - Schedule
 - Technical
 - Cost
 - Mission Assurance
 - Management
 - Process

External Data

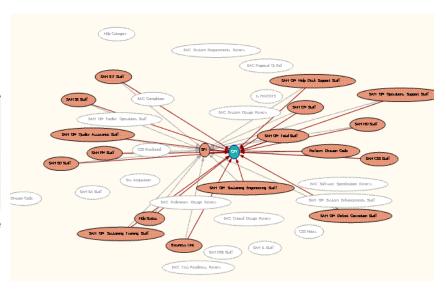
- CPARS
- Customer satisfaction data
- Award Fees

Milestone Data

- Milestones
 - Proposal
 - Contract Startup
 - SRR
 - SDR
 - Software Specification Review
 - PDR
 - CDR
 - Test Readiness Review
 - Completion

Other Data

- Action Item Data
- Organization benchmark data
- SLOC, ESLOC
- Productivity
- Language, Component type, complexity,
- Reuse ratios
- Platform, environment



Data Mining Results

Column Name	Score	Input	
PRA	0.295	X	
Tech	0.275	X	
CustSatis	0.266	X	
ContractType	0.203	X	
Customer	0.154	X	
Cost	0.121	X	
ContractTypeID	0.113	X	
MA	0.101	X	
MonthAndYear	0.093	X	
TypeOfWork	0.084	X	
EVM	0.078	X	
Organization	0.075	X	
EVMReq	0.073	X	
Supl	0.068	X	
WorkTypeID	0.062	X	
UnconPrecon	0.058	X	
T2N	0.034		
Proc1	0.030		
CashFlowDSR	0.023		
POPBegins	0.000		

Prediction Measures

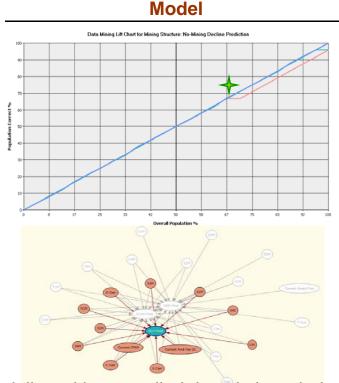
- Schedule
- Cost

- The mining showed that out of the over 125 metrics and measures some are leading indicators and are more important than others in influencing cost and schedule
- While it cannot be proved to be conclusive with the limited data that was used, the trends were definite

Derivation of Data & Data Relationships

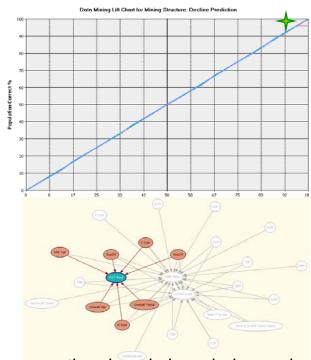
Examples of Derived Data

- Number of Outstanding Program Issues (with and without recovery dates)
- Variance in program Cost/Schedule/Technical health from month-to-month
- Program Cost/Schedule/Technical health trend from month-to-month
- Variance in VAC from month-to-month taken as a percentage of the current EAC


Examples of Discovered Relationships

- Schedule Health is a good indicator of program Overall Health recovery
- Cost and Technical Health are good indicators of program Overall Health decline

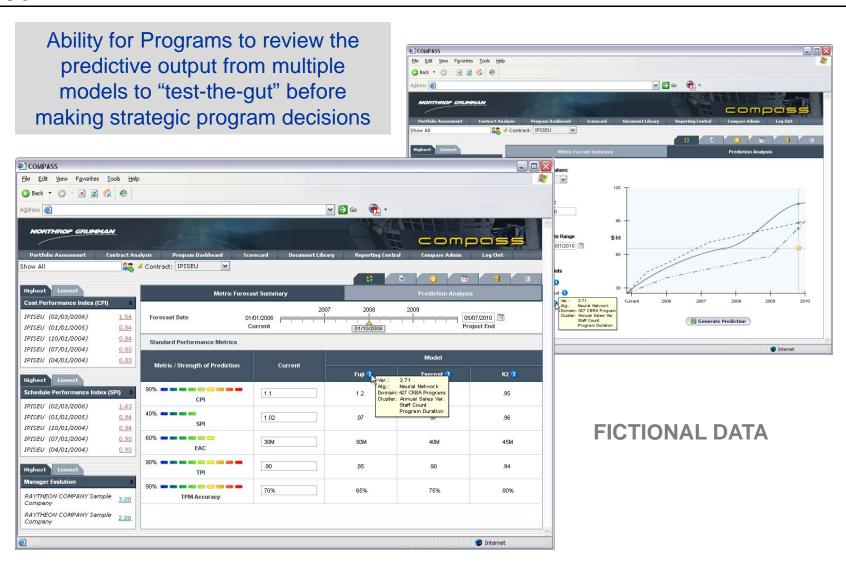
Better understanding of the data allows for organization and enhancement of the dataset



Model Development & Calibration

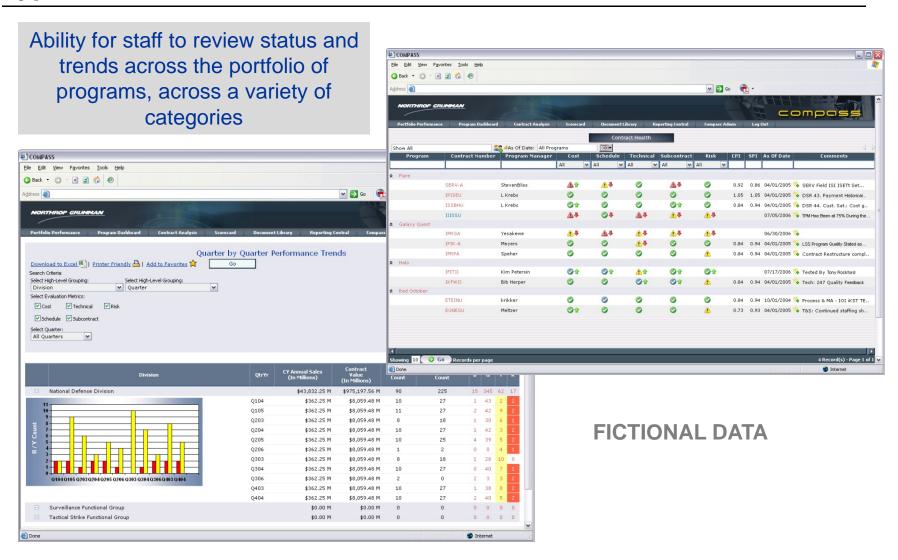
- Modeling without applied domain knowledge or calibration resulted in lower accuracy
- Association models able to determine relevant data attributes

Calibrated Model



- Incorporating domain knowledge and calibration into data mining resulted in higher accuracy
- Data relationships are more clearly defined

Domain knowledge & calibration applied to data mining can enhance the predictive model



Typical Results from the Models

Typical Results from the Models

Agenda

- What is Predictive Analysis?
- Recent Trends
- Application to Program Performance
- **✓** Summary

Summary – Critical success factors

- Executive and Enterprise support and understanding of long-term strategic benefits
- Understanding of the types of data and the correlation between the data
- Understanding of the various constituents in the value chain and the tools/processes for each constituent
- Prototypes or mockups that depict the results of the model
- Sound and robust technical architecture
- Delivery mechanism that shields the complexity of the model from the end users

More Information

- OLE DB for DM specification
 - http://www.microsoft.com/downloads/detail s.aspx?FamilyID=01005f92-dba1-4fa4-8ba0-af6a19d30217&DisplayLang=en
- Plug-in
 - http://www.msnusers.com/AnalysisService sDataMining/Documents/Files%2FSQL%2 0Server%20Data%20Mining%20Plug%2DI n%20Algorithms%20%28Beta%202%20% 2B%2B%29.zip
 - A white paper, tutorial, and complete sample code for Pair-wise Linear Regression
- SQL Server 2005:
 - www.microsoft.com/sql/2005
- Community:
 - Microsoft.public.sqlserver.datamining
 - Microsoft.private.sqlserver2005.analysisser vices.datamining
 - Groups.msn.com/AnalysisServicesDataMin ing
- msdn.microsoft.com (search "data mining")

- Decision trees (classification/regression):
 - <u>ftp://ftp.research.microsoft.com/users/surajitc</u>/icde99.pdf
 - http://www.research.microsoft.com/research/ pubs/view.aspx?tr_id=81
 - http://research.microsoft.com/~dmax/publicat ions/dmart-final.pdf
- Association rules:
 - Apriori algorithm (see Data Mining concepts and techniques)
- Clustering
 - EM:http://www.research.microsoft.com/script s/pubs/view.asp?TR_ID=MSR-TR-98-35
 - K-means (see Data Mining concepts and techniques)
- Sequence clustering
 - ftp://ftp.research.microsoft.com/pub/tr/tr-2000-18.pdf
- Time series:
 - http://research.microsoft.com/~dmax/publicat ions/dmart-final.pdf
- Neural network
 - Conjugate gradient method (see Data Mining concepts and techniques)
- Naïve Bayesian
 - See Data Mining concepts and techniques

Contact Information

Rick Hefner, Ph.D.

Northrop Grumman Corporation
(310) 812-7290

rick.hefner@ngc.com