Joint Surface Warfare Joint Capability Technology Demonstration –

Maturing Weapon Data Link Concepts into Operational Capability

Robert Finlayson Senior Systems Engineer The Johns Hopkins University
APPLIED PHYSICS LABORATORY

NAVAIR Public Release SPR-08-924

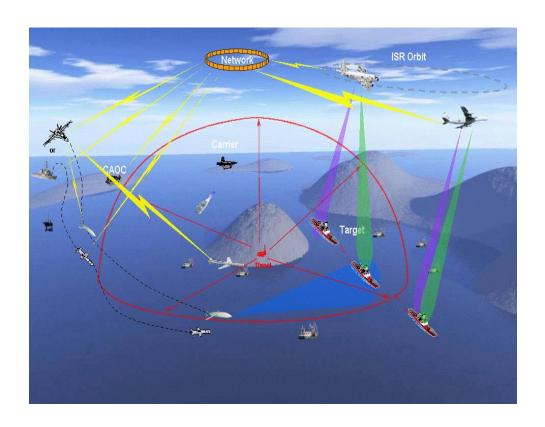
Distribution Statement A - Approved for public release; distribution is unlimited

Demonstration Description

- Developing a capability, not a system
 - System of systems approach
- Leverages maturing weapon data link network technologies
 - Demonstrate the integration of multiple Intelligence, Surveillance, and Reconnaissance (ISR) and launch platforms with existing stand-off weapons
 - Allows interchangeable ISR assets to provide initial targeting data and inflight target updates for multiple weapons
 - Provides multiple, comprehensive joint kill chain threads to the Combatant Commander
 - Significantly increases operational agility
 - Increases probability of target kill in adverse weather conditions and at extended ranges
 - Minimizes launch platform threat exposure
- Conscious decision to organize, plan and execute demonstration as if it were a program
 - Programmatic and system engineering discipline

JSuW Background

- In FY07 Advanced Concept Technology Demonstrations (ACTD) were redesignated to JCTD
- Managed out of PMA 201 Precision Strike Weapons
- JSuW approved for FY07 start
 - Kickoff in June 2007
- Approximately three year period of performance and \$40M effort
- Follow-on to the Weapons Data link Network ACTD
- JSuW involves five programs of record (PoR)
 - Joint Standoff Weapon (JSOW-C-1), Harpoon Block III and F/A-18E/F are funded for J11 message integration as part of their PoR
 - Joint Surveillance and Target Attack Radar System (JSTARS) and P-3C Littoral Surveillance Radar System (LSRS) will incorporate J11 for demo purposes only

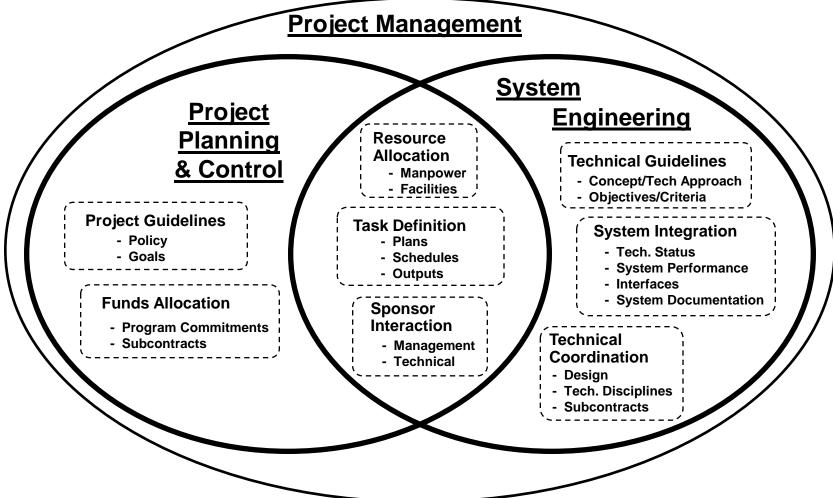


Technical Implementation

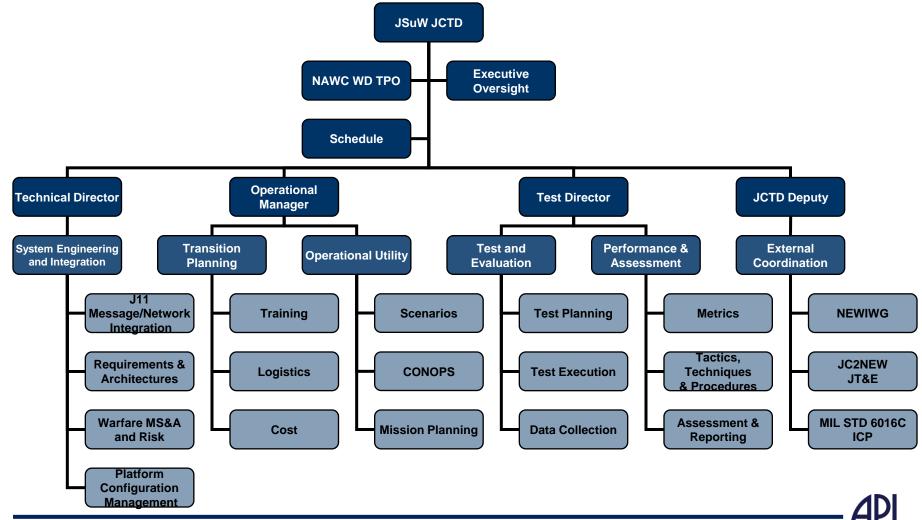
- Incorporate the J11 message software into existing Link-16 terminals
- Interim Change Proposal to Link-16 (MIL-STD-6016C)
 - J11.1 Directive messages
 - Sent to the weapon
 - J11.0 Status Response messages
 - Sent from the weapon
 - J11.2 Weapon Coordination messages
 - Coordination of NEW control
 - Sent and received by weapon controllers and In-Flight Target Update (IFTU)
 Third Party Sources (3PS's)
- Weapons are receiving the Strike Common Weapon Data Link radio
 - Rockwell Collins

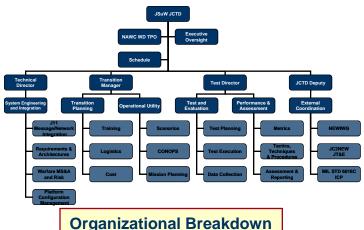
Operational View

- Integrate the Link-16 J11
 Message Set into existing
 software architectures for
 the JSTARS and LSRS
 platforms
- Ensure interoperability with the JSOW-C-1, Harpoon Block III, and F/A-18E/F programs of record (incorporating J11 message set)
- Develop the associated CONOPS/TTPs

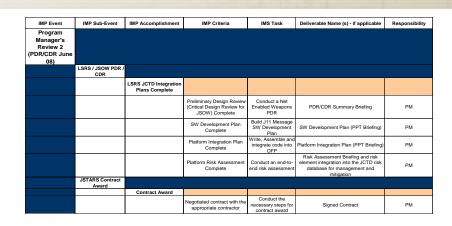


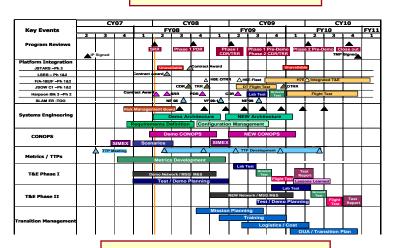
Concept of Operations


- F/A-18E/F, third party targeting source (3PS; i.e., second F/A-18E/F, JSTARS, LSRS) or other ISR platform detect enemy combatants
- J11.2 messages passed between controller / shooter (F/A-18E/F) and 3PS for coordination
- Weapon released by shooter (F/A-18E/F)
- 3PS provides In-Flight Target Updates (IFTUs) to weapon via J11.1 messages
- Weapon replies with Weapon In-Flight Track (WIFT), Ack/Nack and Bomb Hit Indication via J11.0 message


PM-SE Interaction

Organizational Breakdown Structure


Setting Constraints

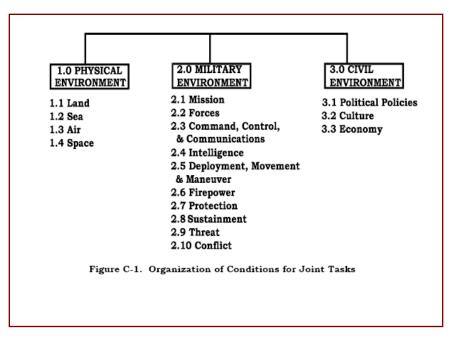

Organizational Breakdown

	Unique ID	Name	JSJAV Status	Total Slack	Duration	% Complete	Start	Finish
1	89	JSMW JCTD	<u> </u>	0 days	929.88 days	22%	Tue 6/5/07	Wed 2/9/1
2	81	Integration, Assembly, Test, & Checkout	ă	0 days	848.88 days	10%	Wed 9/26/07	Wed 2/9/1
3	1252	FA-18		665.13 days	0 days	8%	Mon 6/16/88	Mon 6/16/8
4 177	1256	HSE Availability	ă	565.13 days	0 days	0%	Mon 6/16/08	Mon 5/15/0
5 33	1256	HSE Flight Test	ă	665.13 days	0 days	0%	Mon 6/16/08	Mon 6/16/0
6 113	1254	JSAN integration & Test		665.13 days	0 days	0%	Mon 6/16/03	Mon 6/16/0
7 (10)	1260	HSE Availability	ŏ	665.13 days	0 days	0%	Mon 6/16/08	Mon 6/15/0
8 33	1259	HSE Flight Test	ă	665.13 days	0 days	0%	Mon 6/16/08	Mon 6/16/0
9 (11)	1258	HTE Availability	ŏ	665.13 days	0 dwys	0%	Mon 5/15/03	Mon 5/15/0
10 (11)	1257	H7E Flight Test	ă	665.13 days	0 days	0%	Mon 6/16/08	Mon 6/16/0
11	545	J50W	ă	314.5 days	532.38 days	916	Wed 9/26/97	Mon 11/2/0
12	5-86	JSOW Integration		443.38 days	252.5 days	9%	Wed 9/26/07	Thu 9/18/0
13 🗸 📞	548	JSON System Level PDR	ă	0 days	0 days	100%	Wed 9/26/07	Wed 9/26/0
14 111 6	549	JSON System Level CDR	ă	443.38 days	0 days	0%	Thu 9/18/08	Thu 9/18/C
15	547	JSOW System Test	ă.	235,75 days	338,25 days	8%	Mon 6/30/88	Mon 11/2/9
16 HH C	1201	JSON - SONDI, Preproduction Flight Units (1-5) delivered to RMS		235.75 days	23 days	9%	Mon 5/30/03	Thu 7.01.0
17 111		JSON - SCHOL - Esuipped MSU at AIVL / BAR		261.88 days		0%	Thu 9/25/08	Thu 9/25/0
18	1229	JSON - Radio Available for JCTD SONDL Road Show	ă	261.88 days	0 days	0%	Thu 9/25/08	Thu 8/25/0
12 111 6	550	JOON THE	<u>~</u>	382.25 days	0 days	0%	Thu 12/18/08	Thu 12/18/0
20 11		JECHY - AOM-154C-1 Captive Flort Vehicle RFF	<u>X</u>	411.63 days	23 days	0%	Mon 3/2/09	Vied 4/1.6
21 111		JSON - ASUN Developmental Test Free Flights		373.63 days	111 days	0%	Mon 3/2/09	Wed 0/5/0
22 🖽 📞	554	JSONY - OTRR		314.5 days		0%	Mon 11/2/09	Mon 11/2/0
23 HB	1230	JSON Captive Flight Vehicle (CFV) Delivered to China Lake	ă	453.30 days	0 days	0%	Wed 8/6/06	Vied 0/5/0
24	565	Harpoon	ă	0 days	556,25 days	8%	Tue 11/18/98	Wed 2/9/1
25	554	Harpoon - Integration	ă	287,13 days	68,5 days	8%	Tue 11/18/98	Thu 2/26/8
26 HH v.	667	Hassoon - PDR Event	<u>X</u>	329.25 days	2 days	0%	Tue 11/18/08	Vied 11/19/0
27 111		Harpoon - CDR Event		287 13 days	3 days	0%	Tue 2/24/09	Thu 2/05/0
28	559	Harpoon Block III Missile Software Development		0 days	413,25 days	8%	Mon 6/15/99	Wed 2/9/1
29 HB C	1233	Haragon - OFP Build 4		212.63 days	1 day	0%	Mon 6/15/09	Mon 6/15/0
30 111	561	Harocon - Lab Testing	<u></u>	140.25 days	197.63 days	0%	Mon 9/28/09	Wed 7/14/1
21	1224	Harnoon - Missile Deliveries		144.38 days	SS.S days	8%	Mon 9/28/89	Fri 12/18/8
32 11	1223	Harpoon - Missile 1 Delivery	ă	339.88 days	0 dwys	0%	Mon 9/28/09	Mon 9/05/0
33 H	1222	Harpoon - Missile 2 Delivery	ă	142.63 days	0 days	0%	Wed 9/30/09	Wed 9/30/0
34 HH (Harpoon - Missie 3 Delivery		135.30 days	0 days	0%	Pri 12/10/09	FH12/180
35 TH C		Harsoon - Ground Testing	<u>X</u>	292.88 days	45 days	0%	Mon 9/28/09	Thu 12/36
36 %	562	Harpoon - Flight Testing	ă	0 days	284.38 days	8%	Fri 12/18/09	Wed 2/9/1
37 HH C	1224	Harpoon - ITES Integration Testing Captive Carry	ă	135.38 days	149 days	0%	Fri 12/18/09	Mon 7/26/1
38 H		Harpoon - ITB4 Free Fluit	<u></u>	0 days	61.13 days	0%	Wed 11/24/10	Wed 2/9/1
39 118	563	Harpoon - Test Ship Availability		336.5 days	0 days	0%	Thu 10/1/09	Thu 10/1/0
40	82	Littoral Surveillance Radar System		482 days	349,38 days	14%	Fri 10/19/07	Fri 3/9/9
41	83	LSRS Integration			349,38 days	15%	Fri 10/15/07	Fri 3-6-9
E V 6		Conduct LSRS Preliminary Internal Program flick Assessment			18.75 days		Fri 10/19/07	Thu 11/15/0
43	85	LSRS Requirements Analysis			157.38 days		Fri 10/15/07	Tue 6/3/8
44 ./	06	Develop LSRS system requirements - Draft Version	<u> </u>		10.75 days		Fri 10/19/07	Thu 11/150

Work Breakdown Structure

Integrated Master Plan

Integrated Master Schedule


Capability Statement

Challenge: Cost effective, simultaneous, multi-axis strike in the littorals, against a mutually supported, state-of-the-art surface action group (SAG); at the time and place of our choosing

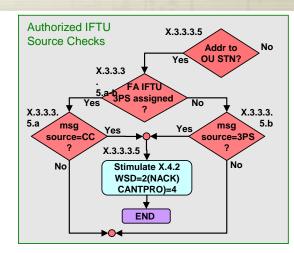
Defining Scenarios

- Understand the environmental conditions
 - Use a guide to ensure all potential impacts have been addressed
- Look at a range of scenarios
 - Address each mission
 - Across the spectrum of "easy to hard"
- Understand the requirements and/or desired capabilities for each scenario
 - How does this affect system design and performance?
- Distribute demonstration resources to address the scenario spectrum
 - Engineering level analysis, modeling and simulation, flight test, etc.

CJCSM 3500.04D, Universal Joint Task List, 1 August 2005

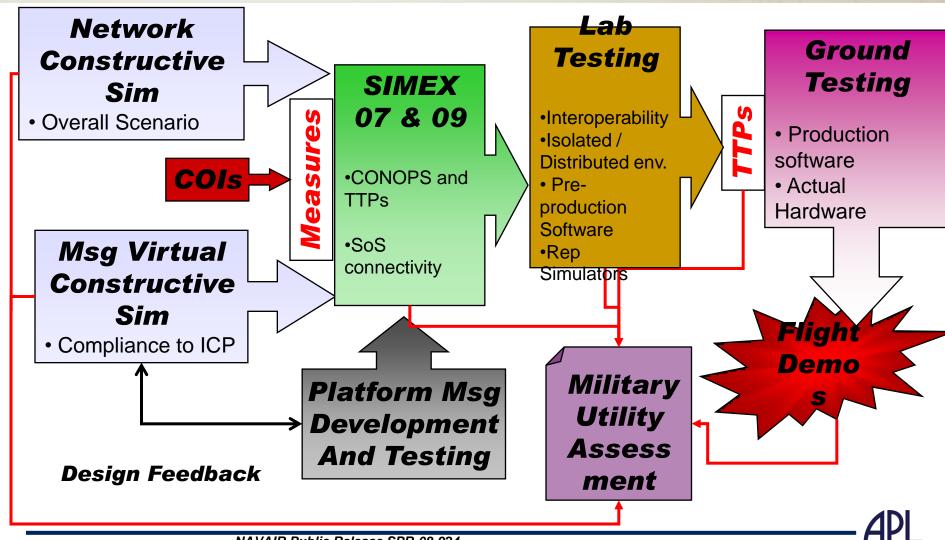
Capability Decomposition

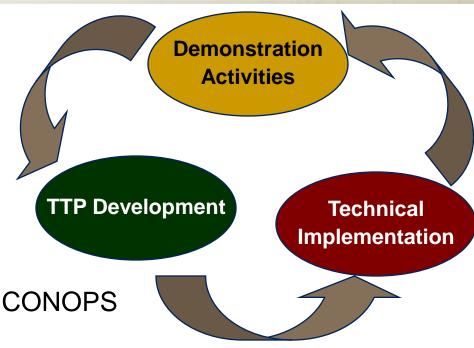
Capability	Attribute / Requirement	Sensor	Shooter	Controller	Weapon	External Sources	Network / Message
Cost Effective	Efficient use of assets	Minimize standoff sensors	Increase survivability	Co-locate with shooter/sensor	Level of effort weapons	Low cost intel. collection platforms	Use existing network
Simultaneous	Coordinated (timing, position)	Synchronized with shooter and weapon	Synchronized, positioned	Auto-logic; advanced USI	Predictable / programmable flight profile	Multiple, dispersed collection	Number of users
Multi-Axis	Pre-planned	Position wrt shooter/weapon	360 LAR wrt target	Controller positioning	Maneuver in flight	Multiple, dispersed collection	Range
Strike	Kinetic attack	Targeting wrt weapon	Loadout, weapon support	ROE feed; combat ID assurance	Lethality vs target set	Multi-role platforms; collect and strike	Detailed message set
Littorals	Clutter, neutral shipping	Resolution, accuracy, fusion	Range from base, CVN	Advanced SA	Selectivity, AI, scan volume	Deployable; survivable	Spectrum management
SAG – Mutual Support	Integrated air defense system	Standoff, fusion	Standoff	Standoff	Survivability	Survivable	Range
SAG - SOTA	Stealth, CCD, decoys, firepower	Accuracy, fusion, jam resistant	Situational awareness	Advanced decision tools – superior SA	Selectivity, CCM, AI, Jam resistant	Embedded artificial intelligence	Resilient
Time and Place of our Choosing	Independent of environment	All Weather (vis, sea state, etc.)	Endurance	Endurance; comm links	Detect target in all weather	Persistent	Reliable


System Performance Measures

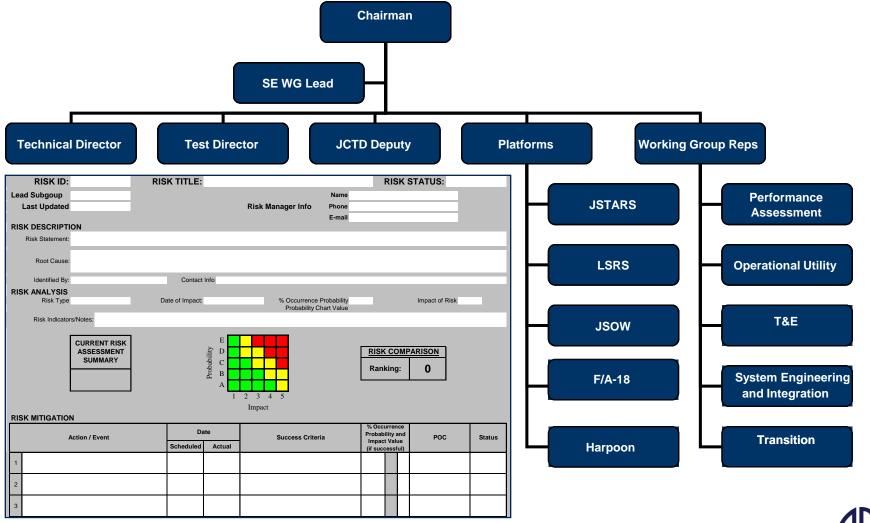

Metrics Entities	Extent	Accuracy	Timeliness	Reliability	Robustness
Sensor	# targets Range	TLE Update rate Resolution	Internal latency IFTU rate	MTBF ETOS Turn time	Survivability Discrimination Jam effects
Shooter	# weapons Sensor range Launch envelope	Msg processing HSI	Platform speed	MTBF ETOS Sys. Architecture	Survivability Launch envelope
Weapon	Range Flight profile	Seeker res. Control logic Aero perf.	IFTU processing Speed Loiter ability	MTBF WIFT trans.	Env. Effects Survivability Discrimination
Network	Range # JUs Bandwidth	Msg. transfer Mission planning	Latency Aircraft interface	Packet loss MTBF Protocols	Jam effects Encryption
Controller	# weapons # targets	IFTU rate Data fusion HSI	Internal latency	MTBF	Location Tgt. Processing Jam effects
External Sources	# available	Gateway	Network-network latency	Data security Intel fusion	Network access Msg. format

Interoperability Challenge


- Link-16 (MIL-STD-6016C, Interim Change Proposal TM06-093Ch2)
 - Approved by the Joint Multi-TADIL Configuration Control Board (JMTCCB) on 02 May 2008
 - Staffing underway for NATO review
 - Message standard is still in "interim state"
- Using Excel spreadsheets for interoperability assessment and configuration management
 - Awaiting Interoperable Systems Management and Requirements Transformation (iSMART) configuration change to the ICP
 - Compare each platform's implementation by software version
 - Identify interoperability gaps and work with platform's to eliminate discontinuities
- Migrate eventually to iSMART as well as MS&A tools currently under development



JSuW T&E Strategy


Tactics, Techniques and Procedures Development

- Maturing TTPs through:
 - Engagement Simulation
 - Table top role play
 - Simulation Exercise
 - Constructive, virtual
 - Ground demo
 - Flight demo
- Balance demo ops with real world CONOPS development
 - Scenario dependent, design to succeed
- Continual trade-off and maturation of TTPS in parallel with message set implementation
- Validation and modification with demo (T&E) activities

Risk Management Board

Interoperability Certification Proposal

- Can JSOW-C-1 and Harpoon Block III use the JSuW demonstration events to obtain certification?
 - Save \$\$
 - Improve understanding of NEW certification process
 - Streamline test planning and execution
 - Develop a process for certifying future Net Enabled Weapons

JITC Certification

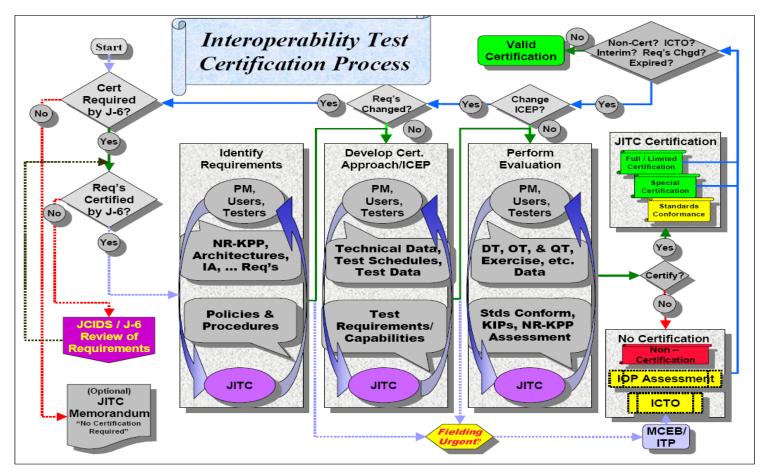


Figure E-1. Interoperability Test Certification Process

CJCSM 6212.01D, Interoperability and Supportability of IT and NSS, 14 March 2007

Summary

- Joint Surface Warfare JCTD has provided a challenging systems engineering environment
 - Engineering a capability more than a system
 - Team dispersion
 - Requirements allocation
 - Interoperability assurance
- Programmatic and SE discipline, practices and procedures still apply
 - Demonstrations don't give you a "free pass" when it comes to project management and engineering
- Expect more of the same in the coming decades
 - Unmanned system expansion
 - Weapon maturity and migration
 - Adaptation of CONOPS and TTPs to optimize NEW capability

