

Gulf Range Drone Control System (GRDCS): Past, Present, and Future

Mrs. Sandra Brown
Specialized Engineering Flight Chief
46 RANG/VTSO
Eglin AFB, FL

October 9, 2008

Outline

■ Past

- Brief History
- Historical Milestones
- Historical Drones

■ Present

- Current Drones
- Capability
- Development Team
- Ranges
- Utah Test and Training Range
- GMCS/WMCS
- Recent Additions

■ Future

- In Development
- Future Drones
- Potential Projects

GRDCS

- <u>G</u>ulf
- Range
- <u>D</u>rone
- **■** Control
- System

Past – Brief History

- Developed in Early 1980's to Support AMRAAM
- "In-House" Technical Expertise to Develop System
 - 96th Communications Group (96 CG) –
 Computer and Software Resources, Drone Integration
 - 46th Test Wing (46 TW) Datalink System, Consoles, Tower, Infrastructure
- Derived from Existing Systems
 - White Sands Missile Range (WSMR) Drone Formation Control System (DFCS)
 - Eglin Central Control Facility (CCF) Real Time System

GRDCS Historical Milestones

Past - Historical Drones

Past - Historical Drones

Present – Current Drones

- Full Scale
 - QF-4
- Sub-Scale
 - BQM-167 A

Present - Capability

- Simultaneously Track and Control any Combination of 6 Drones
 - Flight Paths
 - Formations
 - Dynamically changeable
 - Collision escapes and avoidance
 - Maneuvers
 - 25+ pre-programmed
 - Linked in sequence
 - Escapes
 - Aircraft orbit offshore at 20K MSL
 - Auto flight termination on datalink loss
- Track
- 4 shooters
- 4 high fliers (relays)
- 2 other aircraft
- Track and Terminate 4 Missiles
- Fly Drones Manually or Automatically
- Over the Horizon and Line of Sight Tracking

Present – Capability (Continued)

GRDCS Mission Simulator

- Full 6DOF Simulation of All Supported Targets
- Utilized for
 - Mission practice and preparation
 - Software testing and validation
 - Controller training

■Government

- Developed
- Owned

Present – Development Team

■ 46th Range Group

- Team Based at Eglin
- Validate Autopilot Software
- Integrate New Drones
- Mission Support
- GRDCS SystemImprovement Requests
- Data Analysis
- Create Test Plans
- Develop Models

Software/Systems Engineering Process Improvement Highlights

U.S. AIR FORCE

Present - Ranges

Tyndall and Eglin

- Main mission operations (53rd WEG)
- GRDCS Software Development (46th TW)
- New target acquisition (691st ARSS)
- Holloman AFB / WSMR, NM (WMCS)
 - Support full scale target operations (53rd DET)
- Utah Test and Training Range (UTTR)
 - Support combined Combat Archer and Combat Hammer evaluation (53rd WEG)

GRDCS:

Utah Test and Training Range (UTTR)

- Successfully Tested GRDCS Mobility
- UTTR Fall 2007
- Completed QF-4 Range Sweep Data Collection
- Capable of Flying BQM-167A Target
- BQM-167A Flight Scheduled for November 2008

- GRDCS Mobile Control System (GMCS)
- WSMR Mobile Control System (WMCS)
- Used for "Wounded" Drone Recovery
 - Chase pilot visually ascertains damage
 - Controller performs controllability check
 - Mission commander determines if recovery should be attempted
 - Flown to short approach by GRDCS
 - Hand-off to GMCS for final recovery
- Available as Backup Control if Main Control Facility Goes Down

Linux based I/O Control System

- Linux GRDCS IO (LGIO)
 - Replaces AIX I/O Computers
 - Supports ISc Interface
- C-Band Radar Interface
 - Bi-Phase Serial Data
 - Flight Termination System Data
- Designed for Interoperability

■ Future Features

- Joint Advanced Missile Instrumentation (JAMI) Interface
- Non-Developmental Item—Airborne Instrumentation Unit (NDI-AIU) Interface
- Search Radar Interface
- Range Instrumentation Grid (RIG) Data
- Output Translated Slaving Data

Future – In Development ProLog Replacement

Old

- Standard Monitors
- IBM Proprietary Pushbutton Input
- Individually Wired Pushbuttons with Overlay
- Specialized Controller Joystick

New

- Widescreen Monitors
- COTS Touch Screen
- Integrated Connection
 Programmable LCD Pushbuttons
 with Standard Serial Interface
- USB Joystick

Future – In Development Display Update

Old

- IBM Proprietary GraPHigs
- IBM Proprietary Hardware
- IBM Proprietary OS
- Wireframe Only

New

- Modern Open Standard OpenGL
- COTS PCs
- Linux Based OS
- Modern Display Technology

Future – In Development

■ Convert Servers to Linux

- Migrate Control Processors to Linux
- Provides Support for Multiple Programming Languages

Decoupled Simulation

- GRDCS Core Processes Run Independently of Simulator Processes
- Modular Interface

GRDCS Mission Management

- Enhance System Startup and Configuration to Point/Click Interface
- Enhanced Logging
 - Record More Data
- Real-time Matlab® Analysis Capability

Future - QF-16 Integration

- Replay Capability
- Additional Datalink Interfaces for Interoperablity
 - UHF
 - Link-16
- Flight Path Management
 - Enhance Flight Path to be Based on Time and Location
 - Possible Touch Screen User Input
- Terrain Avoidance
 - Use DTED Maps to Provide Notification of Terrain Abnormalities
- GPS Based Navigation
- 3D Visualization
 - Provide Different Views
 - Used with Replay for Personnel Training

Conclusion

■ Past

- Brief History
- Historical Milestones
- Historical Drones

Present

- Current Drones
- Capability
- Development Team
- Ranges
- Utah Test and Training Range
- GMCS/WMCS
- Recent Additions

■ Future

- In Development
- Future Drones
- Potential Projects

GRDCS Engineering Contact Information

Susan Swink

susan.swink@eglin.af.mil

■ Brian O'Neil

brian.oneil.ctr@eglin.af.mil

■ Joel Bretz

joel.bretz.ctr@eglin.af.mil

Jeremy Mings

jeremy.mings.ctr@eglin.af.mil

Jerry Smailes

jerry.smailes.ctr@eglin.af.mil