

Telemetry of the Future

...and the future is not too far off!

Thomas Grace TAS Chief Engineer Thomas.Grace@navy.mil 301-342-1227

50 Years of Service

Background

- In 1960 IRIG 106 Chapter 4 was published
 - 3 pages in length
 - Ushered in the era of PCM Telemetry
- 48 years later Chapter 4 is still being used
- Virtually every major weapons system in use today was tested using Chapter 4

However, in the late 1990s it began to show it's age

Disturbing Trends

Spectrum and Data Rate Trends

Background

iNET

- Decrease time and cost associated with T&E
 - Reduce rework associated with:
 - Tm Dropouts , need to return to base to access data on onboard archive, etc.
- Provide flexibility to respond to future needs
 - Lack of two way connectivity limits flexibility.
- More Efficient Use of Spectrum
 - Real-time transmitter control, data set selection, etc...
- Leverage Sim/Stim capability with two-way connectivity to test article
- Leverage the Wireless Revolution
 - DoD and Private Sector are investing huge amounts of intellectual and financial capital in wireless networks

Laying the Foundation

- Needs Discernment
 - What needs does this new architecture need to meet?
- Experimental Architecture
 - Can network enhancement of telemetry meet the needs?
- Technology Shortfalls
 - What technology gaps exist to deploying the experimental architecture?
- Investment Roadmap
 - Where does the sponsor need to invest to make iNET a reality?

The Needs Discernment is the cornerstone upon which the Architecture is built

iNET – The Study

Needs Discernment - Scenarios

- 52 Test scenarios documented
 - Narrative descriptions of a wide range of test scenarios
 - Near-term to long-term, simple to exotic, etc...
 - Mostly targeted at the aeronautical environment
- Based on
 - Site visits to MRTFBs
 - EAFB, PMRF, Aberdeen, Eglin, Pax (and NASA Dryden)
 - Brainstorming sessions with test engineers, project managers, range folks, instrumentation folks, spectrum managers, etc....
 - Workshop (CTTRA)
 - Attended by 130 people
 - Virtually all MRTFB ranges were represented
- Validated by the private sector aviation industry
 - Aerospace and Flight Test Radio Coordinating Council (AFTRCC) reviewed scenarios
 - Added one and endorsed them as describing their future needs!

iNET – The Study

Extensive Network Connectivity

iNET

Long-term Vision: Near-term Results

iNET

A Complex Undertaking

Architecture

TmNS Architecture

- The Telemetry Network System (TmNS) Architecture is the core component of iNET
- Architecture is going through a 4 step maturation process
 - Experimental, Proposed, Draft and Final
- Proposed Architecture completed May, 2007
- Significant community review planned
 - Workshop (CTTRA)
 - June '07 in Virginia Beach
 - RCC (TG Meeting)
 - March '07 at WSMR
- Community feedback will be incorporated
 - 75% Proposed architecture delivered in July, 2007

Architecture

Architecture-Some Key Details

- Test Article Segment
 - Switched network architecture
 - Gigabit Ethernet
 - IEEE 1588 used for time correlation on vehicle
 - Achieving few hundred nanosecond time synchronization
 - Network link and PCM can use the same antenna!
- Ground Station Segment
 - Existing telemetry antennas can be upgraded
 - Used for network and PCM at same time
- RF Characteristics
 - TDMA over OFDM will be employed

Standards

Working Groups

- RF Communications Link
- Test Article Network
- Ground Station Applications
- System Management
- Metadata

Architecture Refinement

- Standard work being feedback
- Process for tracking and addressing architecture compliance issues within the SWGs
- Maturing for completing the Proposed Architecture in '09

Drive Before Fly!

- Initial Testing
 - Aberdeen Proving Grounds
 - Vehicle Test track
 - Installed on Humvee
 - Existing Range Infrastructure
 - Cisco 802.11 network
 - Replicate Dropouts
 - Network Dropouts
 - Tm Dropouts

GPS Antenna

vNET Package

Network Antenna

Tm Antenna

Flight Testing

iNET

- Edwards AFB
 - Install on C-12
 - Create rf network over Edwards
 - Harris SecNet 11
- First flight August 1st, 2006!
- Successfully Demonstrated
 - Mining of data from onboard recorder
 - Remote control of instrumentation system
 - Creation of error-free and drop-out free PCM telemetry

Tech Demo

Operational Demo

- Spring '08
 - Comm Links Team tested 802.11b with transverter
 - Flight tests went well Paper at ITC
 - Once operational verified they delivered it to the Test Article Segment Team
- Spring/Summer '08
 - Comm Link Hardware is being integrated with a Test Article Network
 - Installed in Test Pilot School H-60
- Fall '08
 - First Flight of OP's Demo
 - Control On-board Instrumentation, Fetch data, Fix SST, etc.
- Plan
 - Test in helo environment
 - CONOPS Validation
 - Integrate into Range infrastructure

- FY12
 - System Design and Development
 - Fully deployed system at two ranges
 - Air Force Flight Test Center Edwards
 - Naval Air Warfare Center- Aircraft Division Patuxent River
 - ????
 - Initial Operational Capability (IOC)
 - Support for most scenarios

What Others Are Saying

- The Japanese Gov't has launched and official study of iNET
 - Goal is to put iNET like capability on their range
 - Sent a delegation to ITC to investigate iNET
- iNET received the ITEA Publication Award for 2006
 - "Through in-depth research and a concise presentation, the authors precisely convey how iNET is taking a systems approach to reengineer telemetry...thus meeting the challenges of testing the next generation of weapon systems
- Recent Letter signed by Range Commanders Council
 - "iNET is designed to enable the ranges to conduct our missions with system-of-systems weapons in a manner that replicates how we intend to fight with them."

Questions???

Why Do This?

Capability Enhancements

- Recover telemetry dropouts
- Access (random) to data on onboard recorder
 - More efficient test
 - Unexpected event investigation
 - Inter-maneuver analysis
- Error free data delivery
 - Many processing algorithms cannot tolerate errors
- Control of instrumentation from the ground
 - Control Instrumentation operation
 - Reprogram PCM downlink
 - Etc.
- Hot Mic
 - Test Team Unique/between multiple assets
- Etc.

Leverage the Revolution

- Within DoD and the private sector
 - Networks are the solution of choice!
 - Virtually all new wireless services are network based
- Vast investment of intellectual and financial capital
 - Modulation schemes, coding, protocols, etc
 - Huge investment in a common problem
 - The wireless movement of data!
 - Unprecedented in our history

Flexibility For Tomorrow!

- The ability to meet as yet unforeseen future requirements is critical
 - How will we test future weapons?
 - Complex systems of systems?, swarming UAVs?, sensor networks?, etc.
- Networks are inherently very flexible
 - The internet, phone system, etc.
- Layered approach facilitates technology upgrades

Why Do This?

Spectrum – Use It All!

- Networks hold the promise of allowing the management of pooled spectrum
 - All available spectrum shared among test articles
 - Real-Time and priority based allocation of spectral resources
 - Allow on demand transmission of data
 - Vice continuous transmission
 - Meet demand for large numbers of parameters with average bandwidth of data
- Retain continuous transmission for time critical and safety of flight data

Why Do This?

Spectrum – Use It Efficiently!

- Traditional Telemetry
 - Point-to-point telemetry only
 - Single level of service provided
 - All data receives time critical quality of service delivery
 - It is spectrally inefficient to provide time critical delivery for ALL telemetry data
- Network Enhanced Telemetry
 - Point-to-point and network telemetry combined
 - Multiple levels of service provided
 - Move <u>ONLY</u> time critical data within milliseconds
 - Down-link the rest over the next few seconds or minutes
 - Multiple levels of service allow more flexible and efficient use of scarce spectral resources!

Other Network Services

