EVALUATING THE AUTONOMY OF UAVs

Herbert Hecht, Ph. D. SoHaR Incorporated Culver City, California

NO HUMAN PILOT

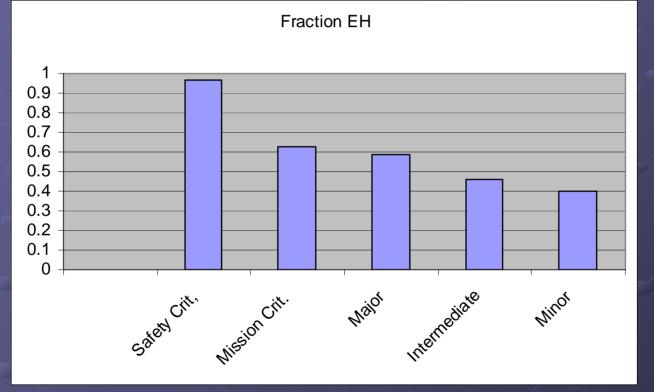
 SAVES WEIGHT
 SIMPLIFIES DESIGN
 INCREASES LOSS ACCEPTANCE
 EXTENDS FLIGHT ENVELOPE • ALL HANDLING OF ANOMALOUS CONDITIONS MUST BE PROGRAMMED AND TESTED IN ADVANCE

EXCEPTION HANDLING

SOFTWARE TESTING

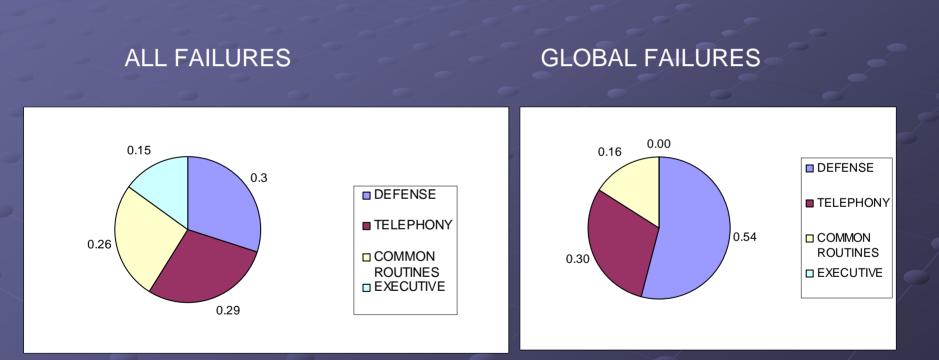
 ALL STATED REQUIRE-MENTS HAVE BEEN IMPLEMENTED
 EXECUTION PRODU-CES DESIRED RESULTS

 STRUCTURAL
 TRAVERSAL OF IMPLEMENTED PATHS PRODU-CES NO UNDESIRABLE RESULTS


NEITHER APPROACH ASSURES ADEQUACY OF EXCEPTION HANDLING

EXCEPTION HANDLING

VERY LITTLE LITERATURE EXCEPT FOR LANGUAGE CONSTRUCTS NO GUIDANCE FOR SYSTEM LEVEL **REQUIREMENTS FORMULATION** MOST SOFTWARE FAILURES IN WELL-**TESTED SYSTEM ARE DUE TO FAULTY EXCEPTION HANDLING**


EXCEPTION HANDLING AND CRITICALITY

SPACE SHUTTLE AVIONICS SOFTWARE

Hecht, H. and P. Crane, "Rare Conditions and their Effect on Software Failures", *Proc. of the 1994 Annual Reliability and Maintainability Symposium*", January 1994, pp. 334 – 337.

MORE EXCEPTION HANDLING FAILURES

Kanoun, K. and T. Sabourin, "Software Dependability of a Telephone Switching System", *Digest of Papers, FTCS-17,* Pittsburgh PA, July 1987, pp. 236 – 241

RELEVANT QUOTES

"The main line software code usually does its job. Breakdowns typically occur when the software exception code does not properly handle abnormal input or environmental conditions – or when an interface does not respond in the anticipated or desired manner."

C. K. Hansen, *The Status of Reliability Engineering Technology 2001*, Newsletter of the IEEE Reliability Society, January 2001

"Therefore the identification and handling of the exceptional situations that might occur is often just as (un)reliable as human intuition."

Flaviu Cristian "Exception Handling and Tolerance of Software Faults" in *Software Fault Tolerance,* Michael R. Lyu, ed., Wiley, New York, 1995 SPECIFYING EXCEPTION HANDLING IS DIFFICULT
 EXCEPTION CONDITIONS ARISE FROM SEVERAL LEVELS

SPECIFYING EXCEPTION HANDLING IS DIFFICULT • EXCEPTION CONDITIONS ARISE FROM SEVERAL LEVELS EXCEPTION CONDITIONS ARE MORE **DIFFICULT TO UNDERSTAND THAN** MAIN LINE REQUIREMENTS

SPECIFYING EXCEPTION HANDLING IS DIFFICULT • EXCEPTION CONDITIONS ARISE FROM SEVERAL LEVELS EXCEPTION CONDITIONS ARE MORE **DIFFICULT TO UNDERSTAND THAN** MAIN LINE REQUIREMENTS EXCEPTIONS OCCUR INFREQUENTLY **BUT REQUIRE DISPROPORTIONATE EFFORT**

SOURCES OF EXCEPTIONS

OPERATIONAL REQUIREMENTS

LOSS OF PROPULSION, ELECTRIC POWER, COMMUNICATION, THERMAL CONTROL

IMPLEMENTATION DETAIL

CALIBRATION ANOMALIES, ACTUATOR STATES, SENSOR INPUT

COMPUTING ENVIRONMENT

HARDWARE FAILURES, MEMORY ERRORS, EXECUTIVE, MIDDLEWARE

MONITORING AND SELF-TEST

OVER-TEMPERATURE SENSORS, SYSTEM PERFORMANCE TEST

APPLICATION SOFTWARE

ASSERTIONS, VIOLATION OF TIMING CONSTRAINTS, MODE CHANGES

WHO IS RESPONSIBLE? **OPERATIONAL REQUIREMENTS SYSTEM ENGINEERING MELEMENTATION DETAILS** SPECIALIST COMPUTING ENVIRONMENT VEHICLE MONITORING AND SELF-TEST **HEALTH MGM'T APPLICATION SOFTWARE**

ENGINEERING

SOFTWARE

REQUIREMENT GENERATION

OBJECTIVE EXCEPTION CONDITION AND ACTION ALGORITHM QUANTITATIVE CONDITION DESCRIPTION TIMING AND RESPONSIBILITY FOR **ACTION** ASSIGNMENT SPECIFY SOFTWARE IMPLEMENTATION **OF ALGORITHM**

DOES IT ADD UP?

				>					
OBJECTIVE		ALGORITHM A		ASSIG		OPER	OPERATIONAL REQM'TS		
		\geq							
	OBJECTIVE ALGO		RITHM ASSIGNM		NM'T	IMPLEMENTATION			
	OBJECTIVE A			ALGO	RITHM	ASSIGNM'T	COMPUTING ENV.		
MONIT	Г. &	SELF-T	EST	OE	BJECTIVE	ALGORITHM	ASSIGNM'T		
							2		
APPLICATION SOFTW.						OBJECTIVE	ALGORITHM	ASSIGNM'T	
CON	ICEP	T SY	′ST. RE	EQ'MTS	SOF	TW.REQ'MTS	SOFTW.I	DESIGN	CODÍNG

SOLUTIONS TO THE PROBLEM

SHARING EXISTING PRACTICES
SHARING EXPERIENCE
CREATING AND SHARING TOOLS

INTEREST GROUP
 STANDARDS WORKING GROUP
 RECOMMENDED PRACTICE

HERBERT HECHT herb@sohar.com 310.338.0990 X110