

# Applying Design of Experiments (DOE) methodology to Sortie Generation Rate (SGR) Evaluation





Josh Tribble
MILITARY ANALYST
AVW TECHNOLOGIES

Phone: 757-361-9587

E-mail: <a href="mailto:tribble@avwtech.com">tribble@avwtech.com</a> 860 Greenbrier Circle, Suite 305

Chesapeake, VA 23320 http://www.avwtech.com





# <u>Agenda</u>

- Introduction
  - Acquisition humor
  - The Integrated T&E Challenge
- Intro to Design of Experiments
- SGR Assessment Methodology
  - Overview of SGR Assessment to date
  - SGR Assessment objectives, MOEs, factors
  - SGR Testbed Assessment Design Factors / Run Matrix
  - SGR Live Testing Validation
- Benefits of DOE over single scenario based analysis
- Conclusion / Q&A

NOTE: My remarks are intended to spur thought on improving how we as testers can do business better to support the warfighter. While I hope this aligns well with DoD and Services T&E initiatives, I am not representing any government agencies' official position.



# **Acquisition 101?**



How do we avoid this?



# Integrated T&E Challenge



- DT / CT / OT / LFT&E remain separate but leverage data and resources whenever possible
- Potential for significant cost savings and earlier risk reduction
- Requires buy-in from all orgs + strong T&E Working IPT
- Requires strong, up-front, test planning and data analysis methodology – <u>Design of Experiments (DOE!)</u>

OT&E Plan

LET&E Plan

OT&

**CT &** 

OT&E
DT&E
CT
LFT&E

Joint Exp, JCTDs

**Integrated T&E** 

T&E<sub>integrated</sub> = f (CT, DT, OT, LFT&E, Joint Exp, M&S, Analysis, etc.) dt

Program Conception



# Intro to DOE



# **Background of DOE**

DOE originated in the field of agricultural studies in the 1930s by R.
 Fisher, building on W.T. Gossett's work at Guinness Brewery—Brilliant!



- Used throughout industry in industrial experiments, process improvement, statistical process control
- USAF has significant experience in use of DOE across numerous programs; Navy is beginning to implement
- DOE methodology is used to interrogate a process, improve knowledge of how the process works, and identify factors and interactions affecting variability of performance outcomes.



### **DOE Process Goal / Benefits**

Compared to other systematic methods DOE designs:







- Cheaper using between 20-80% of usual runs/tests/resources
- Better exploration across range of performance—depth and breadth of testing
- Challenge assumptions and demonstrate real performance
- Better way to design and test complex systems



# DOE Process Outline 4 Basic Steps

#### Project description and decomposition

- Problem statement and objective of experiment (test)
- Response variables, and potential causal variables Ishikawa fish bone.

#### Plan test matrix

- Determine constraints, prioritize factors, and select statistical design (2<sup>K</sup> vs. 3<sup>K</sup> vs. mixed, Taguchi vs. classical arrays, full vs. fractional, non-linear effects?, replications?, blocking?)
- Write the test plan with sample matrices, profiles, and sample output; run sample analysis.
- Produce observations –random run order & blocked against unknown effects
  - Block runs to guard against uncontrollable unknown effects as needed.

#### Ponder the results

- Analyze and project data; draw conclusions, redesign test as necessary and assess results.
- Perform "salvo testing" (test-analyze-test); screen large # of factors then model



| Plan        |                |          |           |          |          |  |  |
|-------------|----------------|----------|-----------|----------|----------|--|--|
|             | InFiort InBack |          |           |          |          |  |  |
|             |                | FaceEast | Face West | FaceEast | FaceWest |  |  |
| Eyes Open   | LeftHand       | 0.43     | 0.58      | 0.52     | 0.40     |  |  |
|             | Right Hand     | 0.62     | 0.29      | 0.28     | 0.36     |  |  |
| Eyes Closed | LeftHand       | 0.62     | 0.57      | 0.47     | 0.40     |  |  |
|             | Right Hand     | 0.42     | 0.26      | 0.42     | 0.47     |  |  |
|             |                |          |           |          |          |  |  |
|             |                |          |           |          |          |  |  |





# SGR Assessment Methodology



# SGR Assessment Requirements

#### SGR Key Performance Parameter

|                                                                                                                                                                          | THRESHOLD                                                                                                                                                                                                              | OBJECTIVE                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sustained<br>SGR                                                                                                                                                         | Average of 160 operational combat equivalent aircraft sorties in 12 hours of launching per day over 30 days (26 Flying and 4 Non-Flying Days as specified in the Design Reference Mission (DRM) – total cycle of 4160. | Average of 220 operational combat equivalent aircraft sorties with 12 hours of launching per day sustained over 30 days (26 Flying and 4 Non-Flying Days as specified in the DRM) – total cycle of 5720. |
| Surge SGR (requires crew augment)  Average of 270 operational combat equivalent aircraft sorties generated during each successive 24-hour period over 4 continuous days. |                                                                                                                                                                                                                        | Surge: average of 310 operational combat equivalent aircraft sorties generated during each successive 24-hour period over 4 continuous days.                                                             |

• Other Measures of Performance: cycle times, task timing, launch and recovery cycles, resource usage, crew fatigue levels, fuel states/rates, etc.



### SGR Assessment Testbed

 M&S testbed captures times and actions associated with preparing, launching, and recovering sorties per the DRM



- M&S matured and validated over time prior to runs for score
- Live test used for validation once ship is delivered and aviation certified



### SGR Model

#### SGR is a function of

- Launch Cycle/Interval Timing
- Recovery Times/Intervals
- Mission Planning Timing
- Aircraft Recovery Time Which Encompasses:
  - Fueling Time
  - Ordnance Handling Times
  - Aircraft Movement/Spotting Times On The Flight Deck
  - Aircraft Movement/Spotting Times In The Hangar Bay
  - Aircraft Availability



# SGR Assessment Analysis Objectives

- Determine average SGR over DRM to meet KPP requirement
- Determine active factors influencing the variability & overall outcome
  - Measure % sorties completion rather than binomial pass/fail
  - Each day in the DRM treated as a single design point due to interdependencies of events within that day
- Provide the fleet with an analytical model showing probability of meeting a given airplan based on its size, mission composition, environment, and any other active factors

$$\%$$
 Airplan  $\_$  Sorties  $\_$  Completed  $=$   $\frac{Daily \_$  sorties  $\_$  completed  $\_$  successfull  $y$   $x100\%$ 

- Allows equal comparison of the 4 T/O surge/sustained requirements across all factors
- Continuous dependent variable provides more statistical power than pass/fail
- Supports more robust assessment of capes and lims



### SGR Factor Selection

#### Experimental control factors:

- Environmental
  - Sea/Winds: state 1 vs. 3
  - Visibility/Sky Cover: Clear Skies (Case I) or Cloudy/Night (Case III)
  - Time of day: midday or midnight (for 12 hour ops, N/A for 24 hour ops)
- Systems:
  - Availability: 100% & actual (for CVN-21 systems and aircraft)—allows for analysis of impact of equipment failures

#### Mission

- Sortie Size: Threshold & Objective levels from the DRM
- Sustained and Surge Mission (12 vs. 24 hr ops (with augmented crew))
- Operation day: early and late in ship on-station operational period; expect to interact with availability for system failures and also translates to possible crew fatigue
- Airplan mission mix: early/late DRM days representing different ordnance mix;
- Mission mix and operation day





# SGR Factor Selection (cont')

#### Controllable Factors held constant:

- Underway Replenishment
  - Not a factor of SGR but presumed to occur on assigned days or fuel and ordnance will not be available for the planned flight days)
- Aircrew augmentation
  - Confounded with mission type assumed normal crew for sustained operations and augmented crew for surge missions

#### Measurable Noise Factors

- Other environmental factors not controlled (if in test / model)
  - Temperature extremes
- Specific metrics in the subordinate models driven by the main inputs, such as:
  - Crew fatigue (driven by the mission day)
  - Resource availability
  - Number of aircraft available
  - Weapon skids available
  - Timing for critical tasks, etc.





# SGR Factor Selection (cont')

#### Design factors:

- Factors with highest expected influence listed first
  - Important when setting up fractional factorial matrices—usually easier to resolve factors and interactions
- Setup for M&S only; cannot test all of these in live testing
- Requires M&S improvements
- Need buy-in for "excursions" above threshold
  - High levels force the "system" towards a higher failure rate to see more variation in response

|       |                      | /I \                 | 10 1              | (111 1 )            |
|-------|----------------------|----------------------|-------------------|---------------------|
|       | _                    | ` ,                  | *                 | (High)              |
| Setti |                      | -1                   | Point)            | +1                  |
| Fact  | or                   |                      | 0                 |                     |
| A     | Surge/<br>Sustained  | Sustaine<br>d (12 Hr | N/A               | Surge (24<br>Hr ops |
|       | Operations           | ops)                 |                   | w/augment)          |
| В     | Sortie Size          |                      | Halfway           | Objective           |
|       | (T/O)                | hold                 | btwn              |                     |
| C     | operational          | Early (1/4           | Mid (2/4          | Late (4/4 or        |
|       | day                  | or 5/30)             | or 15/30)         | 26/30)              |
| D     | Availability         | 100%                 | Halfway<br>btwn   | actual/ spec        |
| E     | Visibility/<br>Cloud | Clear/<br>Case I     | Partly<br>Cloudy/ | Cloudy/<br>Case III |
|       | Cover:               |                      | Case II?          |                     |
| F     | Seakeeping           | 5 kts/SS1            | 12                | 20 kts/SS 3         |
|       | motion               |                      | kts/SS2           |                     |
|       | effects              |                      |                   |                     |
| G     | Time of day          | Day                  | Dusk?             | Night               |
| Н     | Mission              | Early                | Mid               | late                |
|       | Day                  |                      |                   |                     |



# SGR Testbed Run Assessment Design

- Full factorial requires 2<sup>8</sup> or 256 runs
  - Unnecessary since many effects are inactive
- Resulting test matrix is a resolution IV 2<sup>8-4</sup> fractional factorial of 16 runs + 8 additional runs for central composite design
  - Some interactions are confounded but can be resolved
- Model DRM days per the assigned settings and evaluate SGR Compl %
- "salvo test":
  - -Runs 1-8, then analyze for effects
  - -Runs 9-16, then reanalyze for effects
  - Perform center points to check for linearity
  - If necessary, run CCD (face points) for non-linear effects

|     | 1                |     | _  | _  | _  | _  | _   |           |           |           |
|-----|------------------|-----|----|----|----|----|-----|-----------|-----------|-----------|
| Run |                  | Blk | Α  | В  | С  | D  | E = | F=<br>ACD | G=<br>BCD | H=<br>ABC |
| 1   | Factorial        | 1   | -1 | -1 | -1 | -1 | -1  | -1        | -1        | -1        |
| 2   | Factorial        | 1   | -1 | -1 | -1 | +1 | +1  | +1        | +1        | -1        |
| 3   | Factorial        | 1   | -1 | -1 | +1 | -1 | -1  | +1        | +1        | +1        |
| 4   | Factorial        | 1   | -1 | -1 | +1 | +1 | +1  | -1        | -1        | +1        |
| 5   | Factorial        | 1   | -1 | +1 | -1 | -1 | +1  | -1        | +1        | +1        |
| 6   | Factorial        | 1   | -1 | +1 | -1 | +1 | -1  | +1        | -1        | +1        |
| 7   | Factorial        | 1   | -1 | +1 | +1 | -1 | +1  | +1        | -1        | -1        |
| 8   | Factorial        | 1   | -1 | +1 | +1 | +1 | -1  | -1        | +1        | -1        |
| 9   | Factorial        | 2   | +1 | -1 | -1 | -1 | +1  | +1        | -1        | +1        |
| 10  | Factorial        | 2   | +1 | -1 | -1 | +1 | -1  | -1        | +1        | +1        |
| 11  | Factorial        | 2   | +1 | -1 | +1 | -1 | +1  | -1        | +1        | -1        |
| 12  | Factorial        | 2   | +1 | -1 | +1 | +1 | -1  | +1        | -1        | -1        |
| 13  | Factorial        | 2   | +1 | +1 | -1 | -1 | -1  | +1        | +1        | -1        |
| 14  | Factorial        | 2   | +1 | +1 | -1 | +1 | +1  | -1        | -1        | -1        |
| 15  | Factorial        | 2   | +1 | +1 | +1 | -1 | -1  | -1        | -1        | +1        |
| 16  | Factorial        | 2   | +1 | +1 | +1 | +1 | +1  | +1        | +1        | +1        |
| 17  | Center rep 1     | 3   | -1 | 0  | 0  | 0  | 0   | 0         | 0         | 0         |
| 18  | Center rep 2     | 3   | -1 | 0  | 0  | 0  | 0   | 0         | 0         | 0         |
| 19  | cd face point -b | 4   | -1 | -1 | 0  | 0  | 0   | 0         | 0         | 0         |
| 20  | cd face point +b | 4   | -1 | +1 | 0  | 0  | 0   | 0         | 0         | 0         |
| 21  | bd face point –c | 4   | -1 | 0  | -1 | 0  | 0   | 0         | 0         | 0         |
| 22  | bd face point +c | 4   | -1 | 0  | +1 | 0  | 0   | 0         | 0         | 0         |
| 23  | bc face point -d | 4   | -1 | 0  | 0  | -1 | 0   | 0         | 0         | 0         |
| 24  | bc face point +d | 4   | -1 | 0  | 0  | +1 | 0   | 0         | 0         | 0         |



# SGR Live Testing Validation Test Design

- Live test conditions and cost (potentially \$100M?) limit amount of live test and the conditions
- Focus on validating specific test points of interest and confirm within the M&S runs for score

| Fa | actor             | -1                 | 0          | +1        | Rationale                                      |
|----|-------------------|--------------------|------------|-----------|------------------------------------------------|
| Α  | Surge/ Sust. Ops  | Sustained          | N/A        | Surge     | Both operations can be run                     |
| В  | Sortie Size (T/O) | Threshold          | (T+ O)/ 2  | Objective | A mix of sortie sizes can be run               |
| C  | Operational day   | Early              | Mid        | Late      | No means of imposing a late day due to cost    |
| D  | CVN-21/A/C Ao     | 100%               | Halfway    | Actual    | Actual equipment Ao                            |
| Ε  | Cloud Cover       | Actual conditions? |            |           |                                                |
| F  | Sea-State         | Actual conditions? |            |           |                                                |
| G  | Time of day       | Actu               | ıal condit | tions?    |                                                |
| Н  | DRM Mission mix   | Early              | Mid        | Late      | Factor is probably inactive so randomly assign |





# SGR Live Testing Validation Test Design (cont')

Final Test Matrix with settings:

| Test<br>Case | A: Ops<br>Type | B: Sortie Level | Actual (#<br>Sorties) | H: DRM<br>Mission Day | Notes                                    |
|--------------|----------------|-----------------|-----------------------|-----------------------|------------------------------------------|
| 1            | Sustained      | Threshold       | 160                   | 5                     | Priority                                 |
| 2            | Sustained      | Objective       | 220                   | 26                    | Priority                                 |
| 3            | Surge          | Threshold       | 270                   | 26                    | Priority                                 |
| 4            | Surge          | Objective       | 310                   | 5                     | Priority                                 |
| 5            | Sustained      | Halfway btwn    | 190                   | 15                    | Additional run for midpoint              |
| 6            | Surge          | Halfway btwn    | 290                   | 15                    | Additional run for midpoint              |
| 7            | Sustained      | Threshold       | 160                   | 26                    | Additional run for alternate mission mix |
| 8            | Sustained      | Objective       | 220                   | 5                     | Additional run for alternate mission mix |

- Recommend run during Joint Task Force Exercise to ensure combat ready crew & systems
- Some analysis of variance can be run directly but main objective is to compare day for day with M&S results (including V&V of lower level measures within the specific process models)
- Runs 1-4 are priority; select additional runs based on M&S results



# SGR Testbed Assessment Sample Data Analysis

 Response surface plot across factors of interest showing response & interactions

Table of plan vs. predicted actual SGR
Completion Rate for factor settings of
interest -- shows SGR completion %
falling off as too many are sequenced

 demonstrates how analysis can describe ship caps & lims, not just a pass/fail grade for a KPP tested only to threshold







# Benefits of DOE



### CONCLUSION

#### • DOE methodology:

- -may significantly <u>reduce the required runs</u> for Testbed Assessment and live test validation while...
- -providing a <u>more robust process</u> for statistical analysis of variance to determine where the ship design can and cannot support a given air-plan under the other conditions
- -supports robust & efficient <u>integration of M&S development, testing, VV&A, &</u>
  evaluation

Design of Experiments

#### • DOE is:

- -a smarter way of doing testing
- -can provides superior knowledge to the systems engineers
- -something all testers & systems engineers should become familiar with!

#### QUESTIONS?