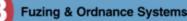
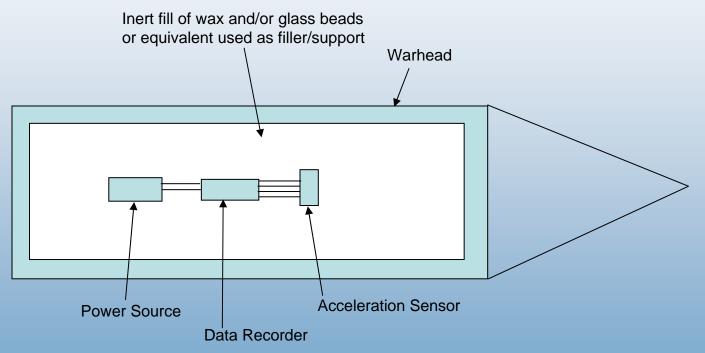


L-3 FOS 3975 McMann Road Cincinnati, Ohio 45245-2395


Development of a General Purpose Data Recorder for Very High Mechanical Shock Load Applications May 21, 2009

Presented By Marc Worthington, Mechanical Engineer

"This presentation consists of L-3 Corporation general capabilities information that does not contain controlled technical data as defined within the International Traffic in Arms (ITAR) Part 120.10 or Export Administration Regulations (EAR) Part 734.7-11."


Agenda

- Background
- Traditional Data Recorder Limitations
- Design
- Interface
- Event Capture & Triggering
- Test History
- Alternate Configuration
- Summary

Background

Typical method used to obtain data from a high g test event

Fuzing & Ordnance Systems

Problems with Typical Data Recording Method

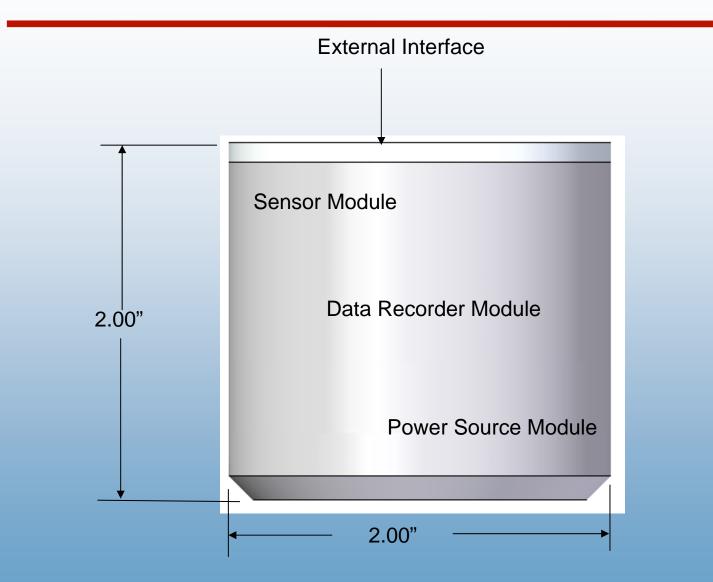
- Data recorder and supporting hardware are placed in a munition as an "after thought"
 - Causes improperly supported assemblies
 - Increased risk of broken wires
 - Component damage
- Difficulty installing and controlling the supporting fill
 - Leads to possible movement of components
 - Causes broken components/wires.
- Failure of the external power source
 - Broken battery leads
 - Partial or total loss of data.
- Disassembly can cause component damage
 - Requires clean up due to potting
- Momentary/permanent loss of power
 - Volatile memory Total data loss
 - EEPROM/Flash memory Partial to total data loss
- Premature trigger events lead to incorrect data being recorded

These problems are addressed with the L-3 FOS design

Fuzing & Ordnance Systems

Design Summary

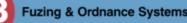
- Design based on initial intelligent fuze recorder design
- Next generation modular data recorder
 - 3 axis acceleration measurement
 - Non-volatile memory
 - Real-time data storage
- New mechanical envelope
 - Includes 4 removable accelerometer modules
 - 2 inch diameter
 - Configured for tube launched systems

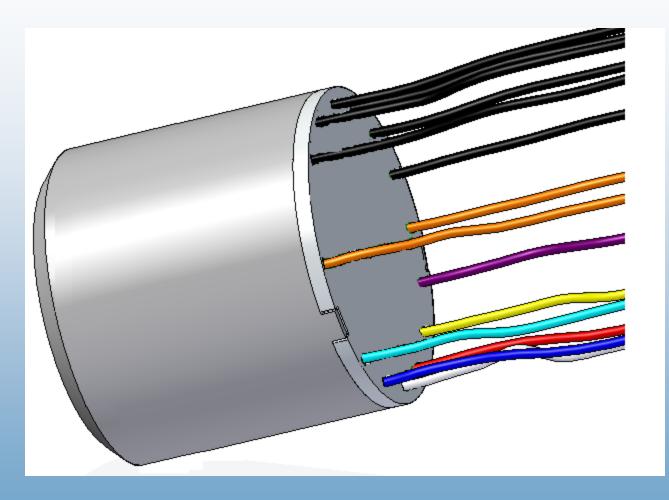

Fuzing & Ordnance Systems

Patent Pending

Design Features

- Analog Data Recording
 - 4 simultaneously sampled 10 bit analog channels
- Digital Data Recording
 - 4 simultaneously sampled digital channels
 - Sampled together with analog channels
- Multiple Triggering Options
- Fast Sampling Rate
 - User selectable rate
- Versatile
 - Adjustable pre-trigger position
 - PC Interface via RS422


Mechanical Design, Envelope

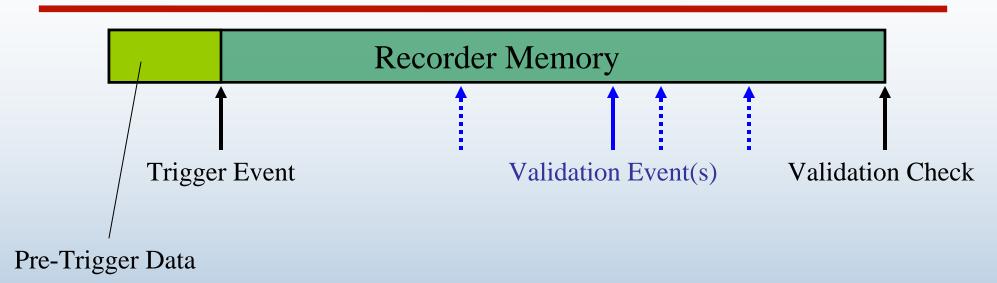

Fuzing & Ordnance Systems

Electrical Design

- Data recorder hardware contained in 3 separate modules:
 - Sensor Module:
 - Accelerometer(s)
 - Signal Conditioning
 - Power Conditioning
 - Analog and Digital signals passed through to data recorder
 - Data Recorder Module:
 - Microprocessor Based
 - Non-volatile Memory memory stored in real-time
 - Input Buffers for analog and digital channels
 - Power Module:
 - Additional Energy Storage (capacitors, batteries...)

Mechanical Design, Application

Fuzing & Ordnance Systems


Graphical User Interface (GUI)/Firmware

🖻 Data Recorder Control - SOCORRO SETUP.LDC]	
Eile Edit Control Help	_	
Upload Config Stop Download Data		Adjustable Sampling
Fuzing & Ordnance Download Config Check Status Zero Data		
[Sampling		Rate
Sampling Rate 🔲 Slow mode kS/s vs/sample	•	Adjustable Trigger
Total Acquisition Time		Point
Trigger Position		Trigger Validation
ms Pre-Trigger, ms Post-Trigger		
_Triggers		Option
Start sampling at power-up	•	Trigger Window
ms		
Accel Sensitivity G G G		Analog and digital
Channel High Low		triggering options
☐ Digital Edge Trigger (A)	•	Timeout Triggering
Igital Edge Trigger (B) ○ Falling ○ Rising		66 6
Timeout Trigger 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
Disconnected Idle Pre Trigger Triggered Validated		
ANO: AN1: AN2: AN3:		

Fuzing & Ordnance Systems

Trigger Validation Timeline

- Pre-trigger data recorded until a **Trigger Event** is detected
- Recording proceeds normally until memory is full
- If no validation event is detected, memory is cleared and recording starts back in pre-trigger mode
- Validation can be time-windowed with trigger

Fuzing & Ordnance Systems

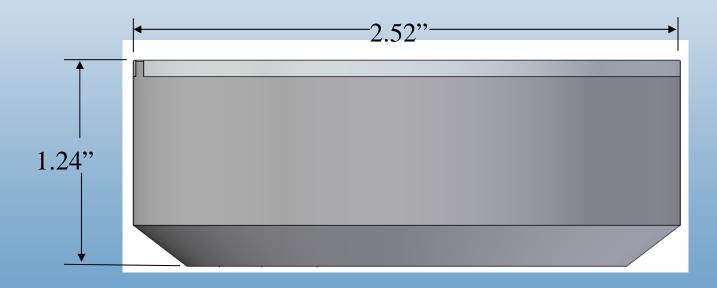
High Shock Testing History

- Data recorder proven to survive high g impacts
 - Multiple Stubbi/Howitzer tests up to 2 ft concrete and complex targets.
 - Artillery Shell Howitzer 9 inch concrete target
 - Multiple Sled Test/Warhead Test
 - Five Inch Gun Fired Tests
- Survived and data downloaded 2 months after projectile stuck in gun tube

Fuzing & Ordnance Systems

Specifications

- Device is functionally specified and tailorable to applications
- Data recorder data sheet pending public release
- Data sheet available upon request


Parameter	Description	Value		units
W1	Weight			lbs
				kg
Vdd	Supply voltage	Min	Max	volts
Idd	Supply current	Тур	Max	mA
Vin (min)	analog/digital input minimum voltage			volts
Vin (max)	analog/digital input maximum voltage			volts
Vth+	Digital input positive going threshold	Max		volts
Vth-	Digital input negative going threshold	Min		volts
Idin	Digital input max input current			μА

Fuzing & Ordnance Systems

Alternate Configuration

- 2.5 Inch Data Recorder Design
 - Packaged to fit in a 3 Inch Booster Cup
 - Prototype testing in June of 2009

Fuzing & Ordnance Systems

Summary

- L-3 FOS used its expertise in fuzing to develop a general purpose hardened data recorder
- L-3 FOS Data Recorder has been tested in applications >20kGs.
- L-3 FOS Data Recorder provides a:
 - Flexible launch diagnostic tool
 - Ordnance impact performance analysis tool
 - Survivable non-volatile data recorder
- L-3 FOS continues to expand its fuzing and development tool set

Rely on L-3 FOS to solve your ordnance problems

Fuzing & Ordnance Systems