

U.S. Army Research, Development and Engineering Command

Utilizing **Ball Grid Arrays** High- G Environments

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Fuze Development Center

US Army RDECOM ARDEC Fuze Division Picatinny Arsenal, NJ

> Stephen Redington, PE 973-724-3231

May 21, 2009

NDIA 53rd Fuze Conference - Orlando

Ball Grid Arrays in High-G Environments

INTRODUCTION

- The Fuze Development Center
- New paradigm for development
- The Fuze Reliability Problem
- Variables Involved
- A Methodology for Evaluation
- Guidance / Mitigation Strategies
- Summary

The Fuze Development Center Picatinny NJ, Building 1530

The Fuze Development Center A new paradigm for development

Concept Prototyping

A model for experimentation and development

The Fuze Development Center A new paradigm for development

Integrated Producability

An integrated model for experimentation and product development

The Fuze Electronics Reliability Problem

- Military markets have little or no influence over electronics technology
- Advanced features of new fuzes require electronics packaging technology developed for commercial markets
 - Cell phones
 - Computers / TV / VCR / Digital cameras & recorders
 - Personal GPS navigation
 - Games / Toys
- Commercial technology has no long term reliability requirement

The Problem (continued)

- Ball Grid Array packaging is new to the fuze community
 - Very little historical data for long term reliability
 - The technology has known shock survivability issues
- Use of Ball Grid Array (BGA) technology is unavoidable in fuze applications
 - High level of integration / small footprint
 - Preferred over fine pitch leaded components for manufacturing
 - Guided munitions require BGA technology

Reliability: What's the difference?

- Commercial environments
 - Short product life cycle (a few years in most cases)
 - Benign storage / operating environment
 - Short storage life / Long service life (2-10 years)
- Fuze environments
 - Long product life cycle (20 years or more expected)
 - Not so benign storage (can be controlled to a degree)
 - Harsh operating environment (thermal & shock)
 - Long storage life / Very short service life (minutes)

RDECOM) BGAs in High-G Environments.

BGA Technology is unavoidable in new Fuzes

What does this mean for fuze reliability?

BGAs in High-G Environments Failed solder joint

Stress failure of a lead free BGA in a tin/lead solder process

Many variables contribute to fuze reliability

- Solder process / void allowance
- Axial load orientation
- BGA package size
- BGA ball pitch
- Thermal coefficients (package to board)
- Thermal environment / Cycling
- Local power density / Package heat dissipation
- Potting compounds / Under-fill materials
- PCB flexing under load

BGAs in High-G Environments Test Methodology

- Industry is investigating several issues
 - Results applicable to fuzing tend to be proprietary
- Fuze Development Center is addressing the problem
 - Test method and vehicle have been developed
 - No hard data to date
 - FDC will pursue remedies in FY10
 - A design guide is the target deliverable
 - More funding / Participants are desired
 - Anybody have some money / time ??

Fuze Electronics Criteria & Process

Test Methodology

- Test individual technology samples
 - Test programmable BGA packages by daisy chaining I/O to create a simple continuity test
 - Isolate and test one sample at a time be it a package or a process

BGAs in High-G Environments Test Methodology

Cubes are gun launched in any axial orientation any number of times. Each sample is individually tested.

Test samples are cast into testable cubes. Up to 3 samples per cube

BGAs in High-G Environments Design Criteria / Guidance

- No hard data but evidence suggests the following guidance
 - Use leaded packages where possible
 - Choose larger ball pitches over smaller ones
 - Smaller ball size results in higher stress from thermal or shock load
 - Choose smaller packages over larger ones
 - Larger area results in higher stress from thermal or shock load

BGAs in High-G Environments Design Criteria / Guidance

- Guidance (continued)
 - Use an appropriate under fill
 - Shock hardness improvement has been demonstrated
 - Bad thermal matches will make reliability worse
 - Shock hardness is likely better in compression over sheer (need more data here)
 - Avoid lead free BGAs if at all possible. Explore re-balling to keep in a traditional tin / lead solder process
 - Do NOT use RoHS BGAs in a tin / lead solder process without changing the oven profile
 - Control all process variables
 - Oven profile, paste formula, under fill, etc...

- Electronics technology is rapidly evolving and resultant long term reliability issues need to be addressed
- RoHS initiatives are creating new reliability concerns before existing tin / lead BGA issues can be answered

Questions

Fuze Development Center

US Army RDECOM ARDEC Fuze Division Picatinny Arsenal, NJ

Stephen Redington, PE 973-724-3231

