



## Dent Block Acceptance Test Susceptibility

#### Robert Savoyski Andy Konst

© 2007 Chemring Group plc

The information in this document is the property of Chemring Group plc and may not be copied or communicated to a third party or used for any purpose other than that for which it is supplied without the express written consent of Chemring Group plc.

This information is given in good faith based upon the latest information available to Chemring Group plc, no warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Chemring Group plc or any of its subsidiary or associated companies.

#### 02 June 2009

#### **CHEMRING GROUP PLC**

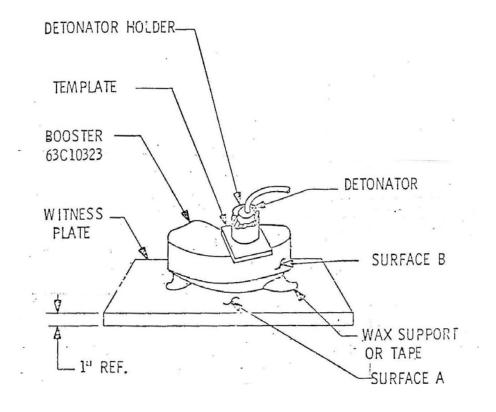




### **Failure to Detect Change**

Investigation of a Change in Propagation Reliability for Detonator/Booster Interface after dent testing failed to detect the change





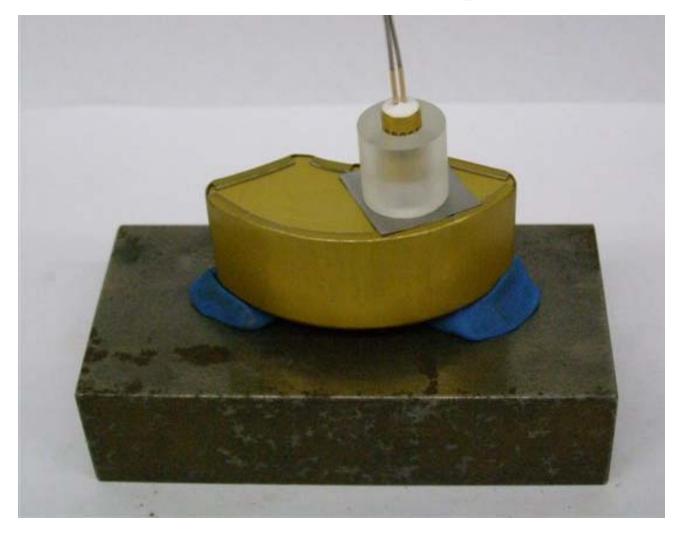







- MK 80 Bomb explosive train
- Simulation for testing

















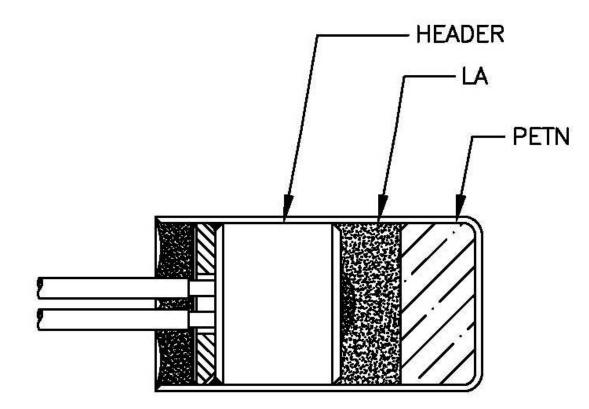







### History of Detonator Design

- Original: Plastic plug, epoxy seal, aluminum cup (AF 62A11810)
- Redesign: Glass header, hermetic solder seal, plated stainless steel cup
- Redesign reliability verified
- Witness block dent criteria confirmed










#### **Detonator Construction**









#### Problem

- Failure of Detonator to initiate Booster discovered during periodic interface testing
- Change in reliability of explosive transfer
- Historically: 30% margin on 99.9% reliability at 95% confidence
- Recently: 50% failures
- Detonator witness block testing demonstrated nominal detonator characteristics







### **Booster Propagation Data**

|            |                | Booster Func.          | Bruceton           |
|------------|----------------|------------------------|--------------------|
| Det. Lot   | <u>Cup Thk</u> | <u>(Req'd. 5.9 mm)</u> | <u>50% Pt.(mm)</u> |
| 99H001-001 | 0.0105         |                        | 10.67              |
| 02H001-008 | 0.0105         |                        | 11.04              |
| 06F003-001 | 0.0105         | 5/5                    |                    |
| 07K003-005 | 0.0115         | 3/14                   |                    |
| 08A003-006 | 0.0115         | 20/22                  |                    |







#### **Dent Data**

| Lot        | Avg Dent | Max Dent | Min Dent | <u>Cup Thk</u> |
|------------|----------|----------|----------|----------------|
| 99H001-001 | 0.020    | 0.021    | 0.019    | 0.0105         |
| 02H001-008 | 0.020    | 0.021    | 0.018    | 0.0105         |
| 04L002-002 | 0.021    | 0.022    | 0.020    | 0.0105         |
| 06F003-001 | 0.020    | 0.021    | 0.018    | 0.0105         |
| 07K003-005 | 0.022    | 0.025    | 0.021    | 0.0115         |
| 08A003-006 | 0.020    | 0.023    | 0.018    | 0.0115         |







### **Investigation of Variables**

- Booster changes
- Detonator cup changes
- Lead Azide changes
- PETN changes
- Manufacturing process changes
- Test set-up changes









### Detonator Construction Variables Testing

|                    | Function Results |            |             |
|--------------------|------------------|------------|-------------|
| <u>Parameter</u>   | <u>8mm</u>       | <u>9mm</u> | <u>10mm</u> |
| 0.0115 cup end thk | 1F/2S            | 3F/2S      | 2F          |
| 0.0105 cup end thk | -                | 4S         | 1S          |
| Normal PETN qty    | 1F/2S            | 3F/5S      | 1F/1S       |
| Increased PETN qty | -                | 1S         | 1F          |
| Normal DLA qty     | 2S               | 3F/1S      | 1F          |
| Increased DLA qty  | -                | 1F/2S      | 1S          |
| DLA                | 1F/1S            | 2F/5S      | 1F/1S       |
| SPLA               | 1S               | 1F/1S      | 1F          |







### Summation

- Detonator cup end thickness had greatest effect
- Flier plate transfer mechanism likely
- No other strong effects noted
- Another unidentified variable contributed to problem
- Additional increase in reliability desired







### **Booster Propagation Data**

|            |                 | Bruceton           |
|------------|-----------------|--------------------|
| Det Lot    | Variable Tested | <u>50% Pt.(mm)</u> |
| 99H001-001 | Std Const       | 10.67              |
| 02H001-008 | Std Const       | 11.04              |
| S001       | 0.0105" cup thk | 8.25               |
| S002       | 18% inc DLA     | 8.75               |
| S003       | 12% inc PETN    | 9.21               |
| 08M004-001 | 38% inc PETN    | 9.10               |







#### **Effort to Increase Margin**

# Increased LA: improved results Increased PETN quantity: greater effect









### **Final Conclusions**

- Interface common to many explosive trains
- A small change in cup material thickness within drawing requirements had an unexpected change in explosive train performance
- Changes within normal tolerances may result in unexpected results



