

Unmanned Systems
 Integrated Roadmap

Mrs. Ellen M. Purdy
Enterprise Director, Joint Ground Robotics
Ellen.Purdy@osd.mil

UMS Integrated Roadmap 2009

• The Purpose is to project a future vision and path forward for how unmanned systems <u>could be</u> developed and employed by the DoD across the next 25 years in accordance with Strategic Planning Guidance, and a capability-based focus.

• The Roadmap:

- Recommends intermediate states of advancement along the way to achieving a vision of unmanned systems supporting multiple capability/mission areas
- Identifies Strengths, Opportunities, Challenges, and Risks associated with achieving the proposed future vision
- Recommends actions that can capitalize on the strengths and opportunities, and mitigate the challenges and risks
- Is responsive to plans, concerns, and issues of DoD Services and organizations as well as Statute and Congressional Intent

Roadmapping Methodology

Craft Potential Future Vision

- Joint Capability Area Mapping
 - Depicts programmed Systems & projects systems beyond POM thru 2034
- System Performance Envelope Evolution
 - Depicts the evolution of increased performance to achieve mission accomplishment
- Identify Technology Enablers
 - Depicts key technologies leading to mission accomplishment and performance increases

Roadmapping Methodology

Map the Road for achieving that proposed vision:

- Goals & Objectives
 - Depicts recommendations that if pursued will implement strategy of development & employment of unmanned systems across Capability Areas
- Conduct Strengths, Opportunities, Challenges & Risks Analysis
 - Assessment of what DoD can leverage to achieve vision
 - Assessment of challenges & risks to be mitigated in achieving vision
- Recommend Actions Leading to Vision Achievement
 - Based on vision, goals & objectives, and analysis, recommends actions DoD can pursue to achieve development and employment of UMS across next 25 years

Sample Mapping: Means to Capabilities

RDT&E = PROC =	Domain	JCAs	System Name	Description	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031 20	132 20.	33 20"	34
In Inventory =	Domain	UCAS	System nume	Complement/augment the military EOD technician	2003	2010	2011	2012	2013	2014	2013	2010	2011	2010	2013	2020	2021	ZUZZ Z	.023	024	2023	2020	2021	2020	2023	2030	2031 2	32 200	/3 203	_
All Systems	Ground	BA, P, BP	MK 1 MOD 0 Robot, EOD	Complemental different file military EOD recriminal performing reconnaissance, disruption, and disposal during extremely hazardous EOD missions involving UXOs and IEDs.												i				i			į							
		BA, P, BP	MK 2 MOD 0 Robot, EOD	Complement/augment the military EOD technician performing reconnaissance, disruption, and disposal during extremely hazardous EOD missions involving UXOs and IEDs.																										
		BA, P, BP	Advanced EOD Robot System (AEODRS)	Robots in the AEODRS family will be capable of autonomous tactical behaviors that will significantly reduce the burden of operation on the EOD technician.																										
		BA, P, BP	Next Advanced EOD Robot	Develop and transition specific technologies to SDD for AEODRS replacement in 2023.													į													
		BA, P, C2	Mobile Detection Assessment Response System (MDARS)	Provides installation commanders an electro-mechanical capability to conduct semi-autonomous random patrols and surveillance activities to include barrier assessment and theft detection functions.																i						i				
		BA, FA, P, L, BP	Defender	Augment the base defense force providing patrol, sentry, and alarm response duties as needed within the integrated bases defense security system.																										
		L	Automated Aircraft Refueling	Increase the efficiency of ground support operations through automation of the ground refueling operation.																									-	
		FA, P, L	Autonomous Expeditionary Support Platform (AESP)	Hybrid diesel electric, self recovery equipped, 48" fording, 120 & 240 VAC & 0-60 VDC power generating UGV capable of fully autonomous, way point, follow me, and teleop navigation.												i				i						İ				
		ВА	Riverine Operations UGV	Develop and demonstrate a UGV capable of inspecting river bottoms for possible caches of weapons or other contraband. Once found, the UGV may be used to help retrieve the item.																										
		FS, CM&S	Autonomous Targets	Provide a more realistic and effective training and OT&E experience to better prepare the force and evaluate system effectiveness.																								X		
		P, L	Automated Aircraft Decontamination	Provide the capability to conduct equipment and aircraft decontamination in a highly contaminated environment while minimizing personnel exposure to hazards.																										
		Ĺ	Automated Aircraft Inspection	Provide the capability to conduct automated aircraft inspections of both exterior and interior components.																										
		P, L	Automated Bare Base/Shelter Construction UGV	Provide the capability for automated bare base and shelter construction to minimize the time and personnel required to establish an expeditionary operating base.													i													
		BA, FA, P, L	UAS-UGV Teaming	Identifying and designing cross-domain teams (i.e., use of a UAS to quickly transport a UGV into hostile/difficult terrain where it can perform its mission).																										***************************************

Performance Envelope

	2009 Evolutionary Ad	aptation 2015	Revolutionary Adaptation	2034
Commands	Physical Human Machine Interfaces	Scripted Voice Command/Hand Signa		Natural Language Understanding
Collaboration	Individual System	Teaming w/in Domair Collaboration Across Don		ned Collaboration
Frequency	Constrained RF	Frequency Hopping		Multi-Frequency Communications
Mission Complexity	Operator Controlled			nomous Adaptive Factical Behaviors
Environmental Capability	Limited Environmental Difficulty	Expanded Environment Difficulty		All-Weather nmental Difficulty
Product Line	Mission Package Product Line Dependent			Product Line Independent
OPSEC	Signature High			Signature Low
Operational Control	1 Operator / Platform	1 Operator / Doma	ain 1	Operator / Team
Bandwidth	Limited	Advanced Bandwidth Management	Autono	omous Bandwidth
Mission Endurance	Hours	Days Mon	ths	Years
Maintenance	Operator			Automated
Awareness	Sensor Data	Situational Awareness	Actio	onable Information

ILICE OOG

Technology Enablers

	2009 Evolution	nary Adaptation	2015	Revolutionary	Adaptation 2034
Power	Battery Powered	Next G	Gen Power Resource		Bio Mass Reactor Powered
Environmental Capability			sors to Enable Robust hther Flexibility		Extreme Weather Capable
Signature Management	Passive	A	ctive		Covert and Self Concealing Behaviors
Architecture	Proprietary		Standard		Standard Unlimited
World Model	Simple		Artificial		Highly Representative
Communication	Relays - Automatical Deployed	lly			High Speed Intelligent Network Comms
Human Detection	Multi-Modal		On the Move		Biomimetic
Human Robot Interaction	Voice Control	Bi	rd Dog/Warfighter's As	esociate	Hierarchical Collaborative Behaviors
Obstacle Avoidance	Sense and Avoid	Dyna	mic Obstacle Avoidan	ce	
	Human Intervention High	gh			Autonomy/Intelligence High

IUSR_007

JROCM

THE JOINT STAFF WASHINGTON, D.C. 20318-8000

JROCM 045-09 16 March 2009

MEMORANDUM FOR: UNDER SECRETARY OF DEFENSE FOR ACQUISITION, TECHNOLOGY, AND LOGISTICS

Subject: FY 2009-2034 Department of Defense Unmanned Systems Integrated Roadmap

- 1. The Joint Requirements Oversight Council (JROC) has reviewed and endorses the FY 2009-2034 Department of Defense Unmanned Systems Integrated Roadmap.
- 2. The JROC requests that the Services, Combatant Commanders, and other Department of Defense organizations utilize this Roadmap as they develop and employ unmanned systems and provide feedback and input for future updates to this Roadmap.

AMES E. CARTWRIGHT General, United States Marine Corps Vice Chairman of the Joint Chiefs of Staff

Copy to:

Vice Chief of Staff, US Army

Vice Chief of Naval Operations

Vice Chief of Staff, US Air Force

Assistant Commandant of the Marine Corps

Commander, US Africa Command

Commander, US Central Command

Commander, US European Command

Commander, US Joint Forces Command

Commander, US Northern Command

Commander, US Pacific Command Commander, US Southern Command

Commander, US Special Operations Command

Commander, US Strategic Command

Commander, US Transportation Command

Commander, US Forces Korea