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Outline

« Basic Muzzle Brake Design Principles
* Impulse Reduction Modeling

« CFD Based Blast Modeling

* Empirical Blast Modeling

* One-Way Structural-Thermal Modeling
« Two-Way Fluid-Structure Modeling
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ROECOM ) M119 - M20A1 Baseline Impulse Study

Unsteady 3-D CFD Simulation Results

— Bare Muzzle
— M20A1 MB

Courtesy of Wikipedia
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ROECOMY  oED Based Blast Modeling

* Blast - Moving Shock Wave
* Propagates at Faster than Speed of Sound
* Very Fine Structures (0.5 mm thick)

* Very High Pressures (7,000 — 15,000 psi at
muzzle)

* CFD Requirements
* Shock Wave is a Discontinuity in Flow Field
* Requires
M Very Fine Grid
B High-Order Spatial Resolution
M Very Large 3-D Flow Domains

* Fixed Grids are Not Feasible for 3-D Gun
Simulation

* Higher Order Solvers Typically Not Stable at Gun
Pressures

* Dynamic Grid Adaption is Only Realistic Option
* Highly Specialized Codes is a Second Option

* Dynamic Grid Adaption

— Refine and Coarsen Mesh as Blast Wave Propagates Through
Flow Domain
Based on Flow Field Gradients and Properties
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RDECOM ) CFD Blast Analysis — Fluent

7.62 NATO G3 with DM41 Round
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Ref: Gun Muzzle Blast and Flash, Progress in Astronautics and Aeronautics, Vol. 139; Klingenberg, Gunter, Heimerl, Joseph M., Seebass, A. Richard Editor-in-Chief, AIAA
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RDECOM ) BWIP

Mesh and Solution-based Adaption Parameter

Solution-based Blast Wave
Identification Parameter (BWIP)

ANSYS-Fluent CFD Solver
Add-on to Improve Adaption
Find Shock Location

. Mach Number Near 1

. Large Pressure Gradient
Control Adaption

° Better Coarsening ' S

*  Better Refinement VAVS S 0 "fg
Reduce Total Cell Count ﬁiv
Reduce Solution Time X'V"360 GU” on
Improve Quality With Finer Resolution FCS MCS Chassis

Y
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BWIP Validation

: Overpressure for XM-360 on FCS MCS Chassis
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LAEPS FIELD PROBE:

Found 16
—FLUENT | |

ChierP ressure (psi)

Timeims

ChierP ressure (psi)

BLAST OVERPRESSURE COMPARISON
LAEFS FIELD PROBEZ

Round 16
— FLUENT

Timelms

ChrerP ress ure (peil

BLAST OVERPRESSURE COMPARISON
LAEFG FIELD FROBES

Round 15

T FLUENT | [

Timemsl

A= Estimated Center of Prassure

- Field Pmm "

\

¥

maaws  Approved for public release; distribution is unlimited. Case 09-9039. 10 March 2009. TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.




Hgfgg@ BWIP Validation

= Dynamic Grid Adaption — XM360
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gm__:,mm) BWIP Validation
—~ Peak Overpressure Contour Plot — XM360
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BWIP Validation
Dynamic Grid Adaption — XM360
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RrDECOM ) BWIP 2-D Simulation

—  Computational Performance Comparison &~

«2-D simulation of Fixed Mesh, BWIP and Advanced BWIP.

«Advanced BWIP is one order of magnitude faster than a fixed mesh.
Extrapolating to 3-D, we can see BWIP would be two or more orders of
magnitude computationally faster than fixed mesh
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ROECOM ) Empirical Blast Wave Modeling

3-D Fansler Blast Code

*Simplified Empirically Based Scaling Based On Fansler Blast Code
*Mat-Lab Based GUI Front End
*Input Parameters

*Gun Geometry, Elevation and Azimuth

*Vehicle and Ground Reflection Planes

*Interior Ballistics

*Muzzle Brake Efficiency
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,;,,FH_,M) XM-324 NLOS-C Muzzle Brake

Thermal-Structural Analysis

« 3.5 Caliber Optimized Muzzle
Brake

« Maximum Efficiency
« Short Length
* Minimum Weight
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rDECOM ) XM-324 NLOS-C Muzzle Brake

Thermal-Structural Analysis

High rate of fire cannon
* 6 rounds/minute
« Standard magazine
« Standard reload

 Determine Temperature
Field Prior to Last Shot

 Reduced Structural
Properties

« Unsteady Structural Model
For Last Shot

 Determine Peak Stresses
and Structural Integrity

« Reduce Muzzle Brake
Material In Low Stress
Regions
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HHE[:QM) Step 1: Fluent CFD Steady-State

Convective Heat Transfer Analysis

« Steady-State Fluent
Analysis
* Vary Muzzle Pressure
« Vary Wall Temperature

* Output

- Surface Average Heat ‘
Transfer

» 33 Separate Model
Surfaces ‘

« Ultilizes Designed
Experiments to Make

POIYnomiaI Models Contour Plot of Surface Total Temperature
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rDECOM ) Step 2: Develop Polynomial Models from_;__

Fluent Heat Transfer Data

* Develop a single cubic polynomial model of surface heat
transfer for each of the 33 sub-surfaces.
« Based on Muzzle Static Pressure
« Based on Surface Wall Temperature

« Example polynomial model shown below for one surface.

Example sub-surface
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Goal — Determine Peak Temperature after Round 95

* Boundary Conditions

 Firing Conditions =
= Forced convection heat transfer /
= Driven by polynomial pressure curve

= Heat transfer boundary condition from Fluent
polynomial model

« Between Shot Conditions
= Natural Convection Heat Transfer
= Temperature dependent natural convection (no
wind)
= Solar radiation heat flux
= Radiation to ambient
= Ambient air temperature = 54°C
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ggfgg@ Step 3: ABAQUS Unsteady Thermal
— Surface Temperature vs Time
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 Temperature and pressure patched into gun
barrel based on projectile ready to enter muzzle
brake.

* Flow allowed to expand using unsteady, coupled-
explicit inviscid solver.

« Surface average pressure vs. time recorded
during run for multiple surfaces.

* Used as input for unsteady ABAQUS structural
model.
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,,,,F,.HM) Step 5: ABAQUS Unsteady Structural

Input Temperature Conditions

TEMP
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,,,,mm@) Step 5: ABAQUS Structural FEA

Peak Stress Results

Results: Von Mises Stress

an Frams
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m;fgg@ Fully Coupled Fluid-Structural Analysis

Generic Barrel and Muzzle Brake

 Fluid Domain Simulated with ANSYS CFX
 Solid Domain Simulated with ANSYS Mechanical
* Full Two-way Coupling with ANSYS Multi-Physics
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ggfgm;,) ANSYS Mechanical Multi-field Solver

to CFX Coupling

CFX ANSTS
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RDECOM )

Mesh and Setup

» Solid mesh developed in ANSYS Workbench.

* Fluid mesh developed in ICEM CFD.

* Coupling and interfaces of two meshes done in ANSYS Workbench
* Pulse source term used in CFX to simulate gun firing.

» Structural deformation passed between to solvers.

e Multi-round mission simulated

Pulse
Source
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RDECOM ) Workflow Snapshots

Mechanical Simulation Setup

Flexible Dynamic
Tt e el
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RDECOM ) Workflow Snapshots

Mechanical Simulation Setup

NANSVS
Total Deformation
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Conclusions

* Advanced Design Tools:

* Impulse modeling:

= Full 3-D CFD analysis capable of predicting impulse with high
degree of accuracy.

« Blast modeling:

= Low fidelity, quick estimates of 3-D blast fields with empirical
models.

= High fidelity models of complex 3-D blast fields with BWIP Based
CFD models.

« FSI:
= Complex thermal-structure forced and natural convection modeling.

= Full two-coupled structural response modeling of gun and muzzle
brake structures.

* Results:
» Higher efficiency, lower blast, lighter weight muzzle brakes.

EApproved for public release; distribution is unlimited. Case 09-9039. 10 March 2009. TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED._




	Outline
	Muzzle Brake Design Principles
	M119 - M20A1 Baseline Impulse Study�Unsteady 3-D CFD Simulation Results
	CFD Based Blast Modeling
	CFD Blast Analysis – Fluent�7.62 NATO G3 with DM41 Round
	BWIP�Mesh and Solution-based Adaption Parameter
	BWIP Validation�Overpressure for XM-360 on FCS MCS Chassis
	BWIP Validation�Dynamic Grid Adaption – XM360
	BWIP Validation�Peak Overpressure Contour Plot – XM360
	BWIP Validation�Dynamic Grid Adaption – XM360
	BWIP 2-D Simulation�Computational Performance Comparison
	Empirical Blast Wave Modeling�3-D Fansler Blast Code
	XM-324 NLOS-C Muzzle Brake�Thermal-Structural Analysis
	XM-324 NLOS-C Muzzle Brake�Thermal-Structural Analysis
	Step 1: Fluent CFD Steady-State�Convective Heat Transfer Analysis
	Step 2: Develop Polynomial Models from Fluent Heat Transfer Data
	Step 3: ABAQUS Unsteady Thermal
	Step 3: ABAQUS Unsteady Thermal�Surface Temperature vs Time
	Step 4: Fluent Unsteady Loading Model
	Step 5: ABAQUS Unsteady Structural�Input Temperature Conditions
	Step 5: ABAQUS Structural FEA�Peak Stress Results
	Fully Coupled Fluid-Structural Analysis�Generic Barrel and Muzzle Brake
	Mesh and Setup 
	Conclusions

