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Outline

• Basic Muzzle Brake Design Principles
• Impulse Reduction Modeling
• CFD Based Blast Modeling
• Empirical Blast Modeling
• One-Way Structural-Thermal Modeling
• Two-Way Fluid-Structure Modeling
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Muzzle Brake Design Principles

Reduced gun impulse Minimize blast effects

Minimize gun weight Minimize flash
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M119 - M20A1 Baseline Impulse Study
Unsteady 3-D CFD Simulation Results

Courtesy of Wikipedia
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CFD Based Blast Modeling

• Blast - Moving Shock Wave
• Propagates at Faster than Speed of Sound
• Very Fine Structures (0.5 mm thick)
• Very High Pressures (7,000 – 15,000 psi at 

muzzle)
• CFD Requirements

• Shock Wave is a Discontinuity in Flow Field
• Requires 

Very Fine Grid
High-Order Spatial Resolution
Very Large 3-D Flow Domains

• Fixed Grids are Not Feasible for 3-D Gun 
Simulation

• Higher Order Solvers Typically Not Stable at Gun 
Pressures

• Dynamic Grid Adaption is Only Realistic Option
• Highly Specialized Codes is a Second Option

• Dynamic Grid Adaption
– Refine and Coarsen Mesh as Blast Wave Propagates Through 

Flow Domain
– Based on Flow Field Gradients and Properties
– Solution Based Automatic Adaption
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CFD Blast Analysis – Fluent
7.62 NATO G3 with DM41 Round

1st Pre-Cursor

FLUENT:     t = -350 μsec              t = -5 μsec                       t = +120 μsec 

2nd Pre-Cursor Main blast wave

Experiment

Pressure-inletPressure-inlet

Pressure
outlet

Pressure
outlet

Ref: Gun Muzzle Blast and Flash, Progress in Astronautics and Aeronautics, Vol. 139; Klingenberg, Gunter, Heimerl, Joseph M., Seebass, A. Richard Editor-in-Chief, AIAA
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BWIP
Mesh and Solution-based Adaption Parameter

XM-360 Gun on 
FCS MCS Chassis

Solution-based Blast Wave 
Identification Parameter (BWIP)

• ANSYS-Fluent CFD Solver
• Add-on to Improve Adaption
• Find Shock Location

• Mach Number Near 1
• Large Pressure Gradient

• Control Adaption
• Better Coarsening
• Better Refinement

• Reduce Total Cell Count
• Reduce Solution Time
• Improve Quality With Finer Resolution
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BWIP Validation
Overpressure for XM-360 on FCS MCS Chassis
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BWIP Validation
Dynamic Grid Adaption – XM360
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BWIP Validation
Peak Overpressure Contour Plot – XM360
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BWIP Validation
Dynamic Grid Adaption – XM360
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BWIP 2-D Simulation
Computational Performance Comparison
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•2-D simulation of Fixed Mesh, BWIP and Advanced BWIP.
•Advanced BWIP is one order of magnitude faster than a fixed mesh.
•Extrapolating to 3-D, we can see BWIP would be two or more orders of 
magnitude computationally faster than fixed mesh
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Empirical Blast Wave Modeling
3-D Fansler Blast Code

•Simplified Empirically Based Scaling Based On Fansler Blast Code
•Mat-Lab Based GUI Front End
•Input Parameters

•Gun Geometry, Elevation and Azimuth
•Vehicle and Ground Reflection Planes
•Interior Ballistics
•Muzzle Brake Efficiency

M256 Gun With M1 Abrams Turret Plane
Gun at 20 Degrees Elevation

Turret Peak Incident Pressure (psi)
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XM-324 NLOS-C Muzzle Brake
Thermal-Structural Analysis

• 3.5 Caliber Optimized Muzzle 
Brake
• Maximum Efficiency
• Short Length
• Minimum Weight
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XM-324 NLOS-C Muzzle Brake
Thermal-Structural Analysis

• High rate of fire cannon
• 6 rounds/minute
• Standard magazine
• Standard reload

• Determine Temperature 
Field Prior to Last Shot

• Reduced Structural 
Properties

• Unsteady Structural Model 
For Last Shot

• Determine Peak Stresses 
and Structural Integrity

• Reduce Muzzle Brake 
Material In Low Stress 
Regions
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Step 1: Fluent CFD Steady-State
Convective Heat Transfer Analysis

• Steady-State Fluent 
Analysis
• Vary Muzzle Pressure 
• Vary Wall Temperature

• Output
• Surface Average Heat 

Transfer
• 33 Separate Model 

Surfaces

• Utilizes Designed 
Experiments to Make 
Polynomial Models Contour Plot of Surface Total Temperature
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Step 2: Develop Polynomial Models from 
Fluent Heat Transfer Data

• Develop a single cubic polynomial model of surface heat 
transfer for each of the 33 sub-surfaces.
• Based on Muzzle Static Pressure
• Based on Surface Wall Temperature

• Example polynomial model shown below for one surface.
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Goal – Determine Peak Temperature after Round 95

• Boundary Conditions
• Firing Conditions

Forced convection heat transfer
Driven by polynomial pressure curve
Heat transfer boundary condition from Fluent 
polynomial model

• Between Shot Conditions
Natural Convection Heat Transfer
Temperature dependent natural convection (no 
wind)
Solar radiation heat flux
Radiation to ambient 
Ambient air temperature ≈ 54ºC

Step 3: ABAQUS Unsteady Thermal
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Step 3: ABAQUS Unsteady Thermal
Surface Temperature vs Time

Nodes for Temperature PlotNodes for Temperature Plot
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Step 4: Fluent Unsteady Loading Model

• Temperature and pressure patched into gun 
barrel based on projectile ready to enter muzzle 
brake.

• Flow allowed to expand using unsteady, coupled-
explicit inviscid solver.

• Surface average pressure vs. time recorded 
during run for multiple surfaces.

• Used as input for unsteady ABAQUS structural 
model.
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Step 5: ABAQUS Unsteady Structural
Input Temperature Conditions
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Step 5: ABAQUS Structural FEA
Peak Stress Results

Results:  Von Mises Stress Results:  Factor of Safety
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Fully Coupled Fluid-Structural Analysis
Generic Barrel and Muzzle Brake

• Fluid Domain Simulated with ANSYS CFX
• Solid Domain Simulated with ANSYS Mechanical
• Full Two-way Coupling with ANSYS Multi-Physics

Outer domain: 
External flow

Chamber:
High pressure, high 
temperature

Barrel

Ground

Muzzle block

FLUID Domain
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ANSYS Mechanical Multi-field Solver
to CFX Coupling
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Mesh and Setup 
• Solid mesh developed in ANSYS Workbench.
• Fluid mesh developed in ICEM CFD.
• Coupling and interfaces of two meshes done in ANSYS Workbench
• Pulse source term used in CFX to simulate gun firing.
• Structural deformation passed between to solvers.
• Multi-round mission simulated

Pulse 
Source
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Workflow Snapshots
Mechanical Simulation Setup

• Boundary Conditions Shown
• Analysis Type : Flexible Dynamics
• Coupled Field Element 

• Solve for thermal and structural stresses
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Workflow Snapshots
Mechanical Simulation Setup
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Conclusions

• Advanced Design Tools:
• Impulse modeling:

Full 3-D CFD analysis capable of predicting impulse with high 
degree of accuracy.

• Blast modeling:
Low fidelity, quick estimates of 3-D blast fields with empirical 
models.
High fidelity models of complex 3-D blast fields with BWIP Based 
CFD models.

• FSI:
Complex thermal-structure forced and natural convection modeling.
Full two-coupled structural response modeling of gun and muzzle 
brake structures.

• Results:
• Higher efficiency, lower blast, lighter weight muzzle brakes.
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