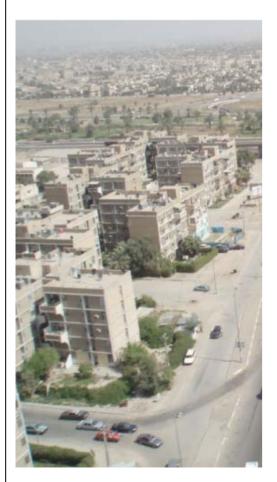
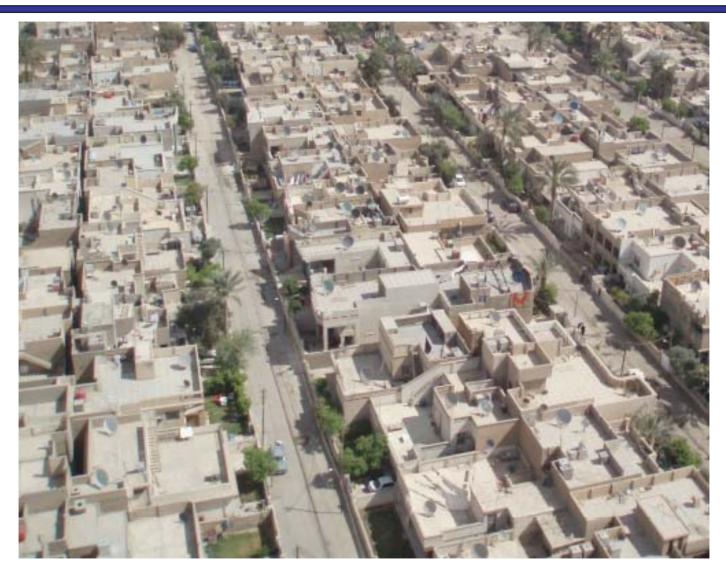


Precision Urban Mortar Attack (PUMA)


Bryan Freeman NSWCDD G31 540-653-4156 540-413-6732 (mobile) Bryan.Freeman@navy.mil

Operational Overview

 Precise, Low Collateral Damage Weapons for Combat in Urban Terrain:


- Enable attacks on the enemy currently masked from indirect fires.
- Overcome limits imposed by Global Positioning System (GPS) multi-path and signal masking.
- Reduce risk of collateral damage.
- Provide an organic attack capability.
- Provide precision attack; mortars are inherently inaccurate.

Distribution Statement A

Urban Scenario

MPLD System Major Design Specs

UAS LST

- Detect and track Class1M Designator
- Fit in Tier 2 Payload
- Future Manned Aircraft LST
 - Modify existing LITENING pod
 - Permit LST of both MPLD and traditional designation

Ground Designator

- <5 lbs Total System Weight</p>
- Eyesafe (unaided eye)
- Match designator engagement ranges
- Covert

3000 ft AGI

UAS Designator

- MPLD designation from Tier 2 altitudes
- Covert
- Fit in Tier 2 Payload

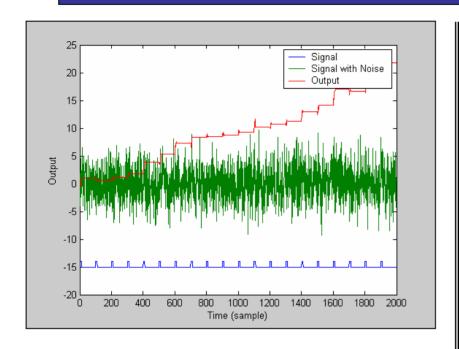
Future Manned Aircraft Designator

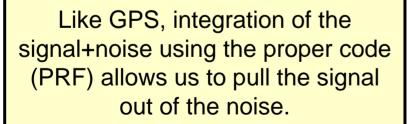
Permit both MPLD and traditional designation

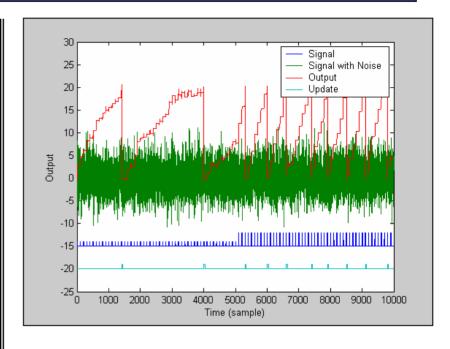
Weapon Seeker

- Work with GPS guided 81mm/120mm mortars, 155mm artillery shells
- Stand alone (GPS denied) desired 4

MPLD Core Technology




- MPLD is very different from current laser designator/marker technologies
 - Traditional designators
 - 50-120mJ+ per pulse, 10-20 Hz pulse rate, instantaneous power in MW range
 - Single pulse detectable
 - Class 4 non-eyesafe
 - MPLD Designation
 - 1-5uJ per pulse, 3-20 KHz pulse rate, instantaneous power in hundreds of watts
 - Requires many pulses to detect (covert)
 - Class 1M unaided eye safe



MPLD Core Technology

With a constant signal to noise, the data rate will increase as we close on the target. This is needed to reduce miss distance and occurs naturally!

MPLD Ground Designator

Design Goals

- Lightweight!
 - Must be much lighter than current 28 lb PLDR designator
 - Integration into existing and near-future rangefinders a major plus
 - Integration into UAS targeting ball for UAS based designation
- Eye Safety
 - Class 1M sufficient for MPLD and PUMA goals
 - May need to increase to provide marking under all weather for fast movers
- Covert
 - Inability to see spot or designator source without knowing proper laser code

MPLD Laser Spot Tracker

Design Goals

- UAS
 - Must fit within targeting ball
 - Must have sufficient detection range to lock onto spot at a range of 1.5 Km

 Desire that the existing LITENING G4 be capable of seeing ground MPLD designator spot

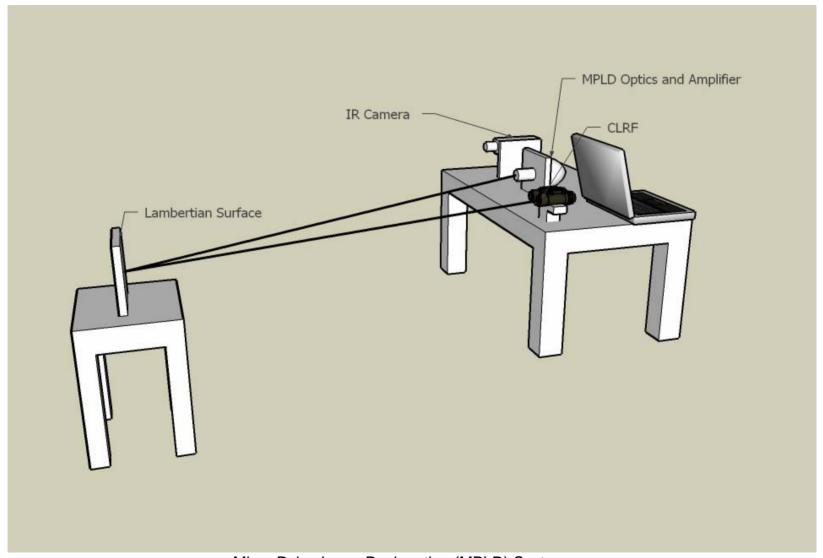
BRITE STAR II

LITENING G4 POD

MPLD Weapon Seeker

Design Goals

- Mortars/Artillery
 - Must have sufficient FOV and processing power to handle body dynamic motion
 - Must fit within small space claim
 - Must be inexpensive (AUR < \$5000)
- Air Delivered Weapons
 - "Dual Mode" traditional designation and MPLD designation highly desirable



FCMortar/SMortar 81mm Conceptual Drawing

Distribution Statement A Designator/Seeker Prototype Test Setup

Micro Pulse Laser Designation (MPLD) System

Technical Status

FY09

- 1540nm prototype completed and demonstrated
 - Preamp issues solved
 - Optical issues solved
 - Real-time lock-on and track (two channels)
 - Approaches modeled prediction of performance
- Analysis of 1540nm vs. 1064nm in process
 - 1064nm wavelength looks more promising at this time, final decision April 2009

Technical Status

• FY09

- Weapon guidance requirements studied
 - Pulse processing model developed
 - Detection and guidance performance range determined
 - Preliminary FOV requirements determined
- Working to complete 1064nm seeker design (will reuse all 1540nm processing and algorithms)
- UAS LST requirements and algorithm development to begin

Technical Plans

• FY10

- UAS Targeting/Designation System Selection
 - Vendor selection via BAA launched early FY10
 - Down-select completed and Contract preparation by end of FY10
 - Contract Award early FY11
- UAS LST Prototype
 - Breadboard proof-of-concept system
 - Demonstration of system on a range
 - Delivery of system design to UAS Targeting Designation System vendor
- HWIL Seeker FCMortar (81mm)
 - Integration with FCMortar hardware
 - HWIL testing and demonstration

MPLD/PUMA Solicitations

Key Solicitations

- FY09/10 S&T
 - Seeker producibility study for laser guided munitions
 - MPLD integration into existing laser range finder
 - BAA: N00178-08-Q-1904 on NSWCDD web site
- FY10 Announcement (Pending)
 - EO/IR/LST integration into a Tier 2 UAS targeting ball
 - Solicitation FY10, award at beginning of FY11

Questions?