
MUNITIONS SAFETY INFORMATION ANALYSIS CENTER

Products & Services are based on staff expertise, library, and Points of Contact

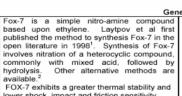
Electronic Library 50,000+ references

Presentations, Videos, Technical Software, etc...

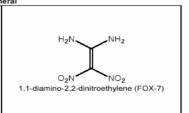
Company Literature

MSIAC Products - Tools & Databases

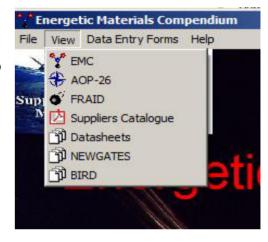
•	Energetic Materials Compendium (EMC)	– 1997
•	Mitigation Methods for Munitions (M³)	- 2000
•	IM State-of-the-Art (IM SoA)	- 2002
•	Fragment Impact Database (FRAID)	- 2002
•	Gap Tests Information Worksheets (NEWGATES)	- 2002
•	Cost Benefit Analysis Model (CBAM)	- 2003
•	Toolbox of Engineering Models for the Prediction of Explosive Reactions (TEMPER)	- 2005
•	Safety Assessment Software (SAS)	- 2005
•	Bullet Impact Results Database (BIRD)	- 2005
•	Sympathetic Reaction Database (SYR)	- 2007
•	Cook-off Aggression Database (HEAT – Beta Version)	- 2008
•	Shaped Charge Impact Database (DARTS – May 2009)	- 2009



Energetic Material Compendium: EMC V3.4

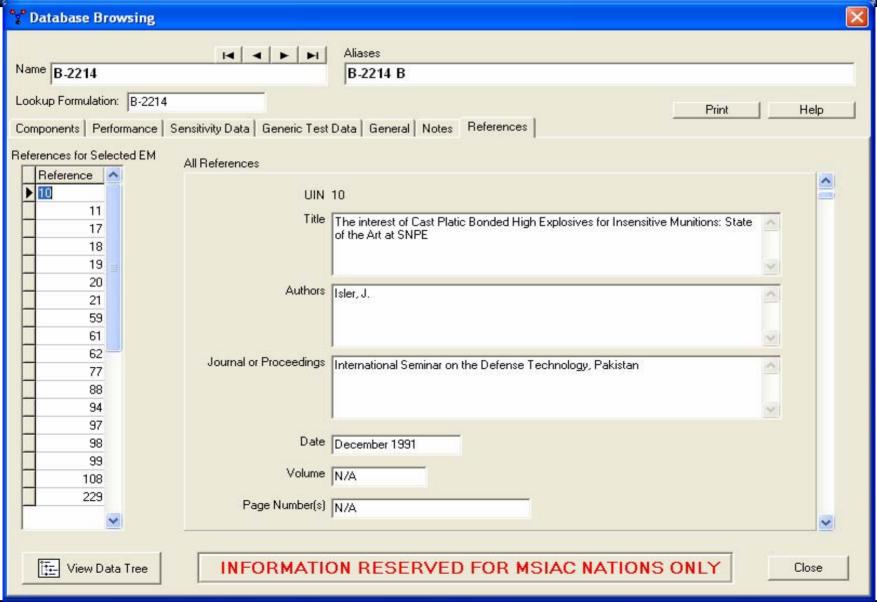

- Current version (V3.4) released in April 2007
- Focus on adding more data and formulations (including current, in-service formulations)
 - >1000 formulations (~800 in V3.2)
 - >450 references (~350 in V3.2)
 - Double number of ingredient datasheets

Synonyms: DADE, DADNE, 1.1-diamino-2.2-dintroethylene, 2.2-Dinitro-ethene-1.1-diamine


lower shock, impact and friction sensitivity than other common explosive ingredients (RDX, HMX, CL-20). Therefore, it is an interesting candidate for reduced vulnerability

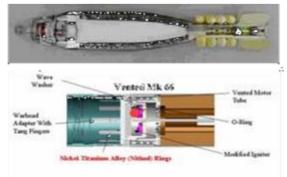
MSIAC Ingredients Data Sheets

New Datasheets can be downloaded from the internet ADN.pdf BuNENA.pdf CL-20.pdf DMDNB.pdf DNAN.pdf Fox-7.pdf HNF.pdf HTPE.pdf LLM-105.pdf NTO.odf polynimmo.pdf

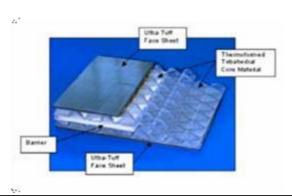

- **New IM suppliers catalog**
- Inclusion of NEWGATES and **BIRD**
- NATO AOP-26 Ed 2
- **Updated version of FRAID**

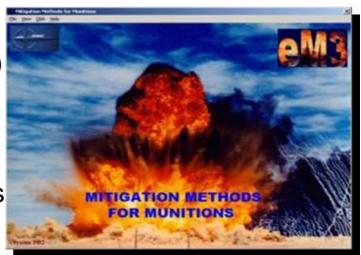
345 'registered' users

Information Included in EMC



Mitigation Methods for Munitions - M³


A compendium of technologies/techniques for mitigating the hazard presented by munitions


- Version 1.04 was released in 2005.
 - Increase in the number of examples
 - More and improved quality images (75% more)
 - 20% more references used
- Enhanced search capability and key wording
- Review of all data to eliminate inconsistencies
- 61 days have been devoted to developing an updated version of M3 in 2008
- 165 registered users

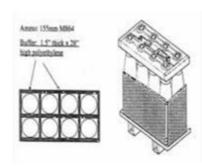
Mitigation Methods for Munitions - M³

Sympathetic Reaction Of Adjacent Munitions

Search In M³
For Potential
Design
Solutions

Input Component

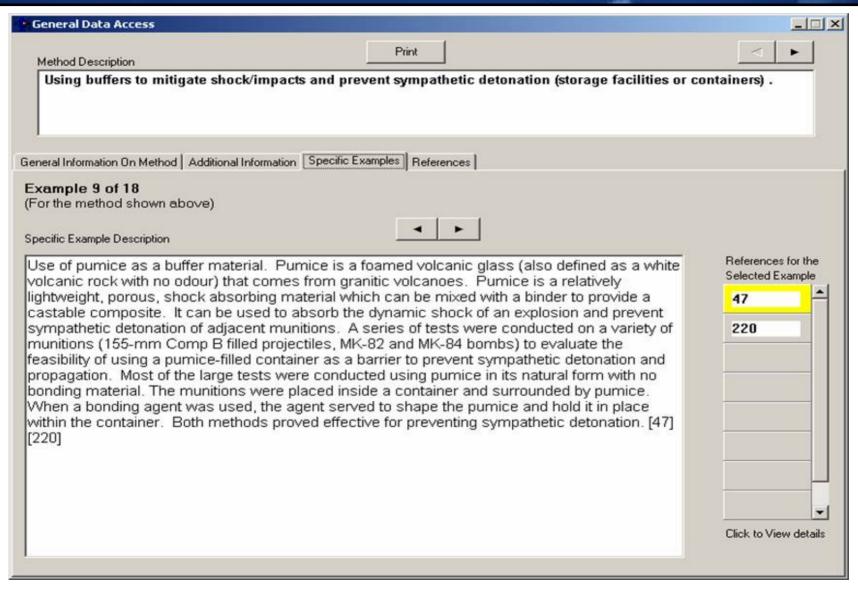
Input Configuration


Input Threat

MUNITION

PACKAGED

SYMPATHETIC REACTION



Mitigation Methods for Munitions - M³

FRAgment Impact Database - FRAID

- Large fragment impact database (~1700 results)
- Wide range of

MSIAC Unclassified

- explosive compositions
- munitions
- tested parameters

FRAID

Fragment Impact Database

Version 1.8

Problems/Questions: MSIAC or Pierre-François Péron

Phone: +32-2-707-5416 or +32-2-707-5426

Email: msiac@msiac.nato.int or p-f.peron@msiac.nato.int

2007

REFERENCES

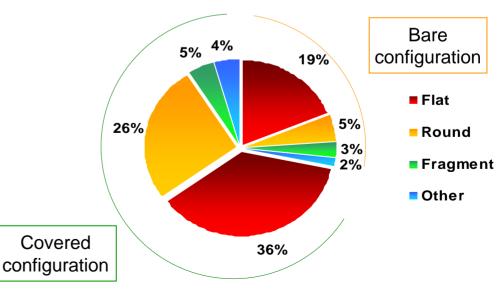
MSIAC would like to acknowledge the contribution of the following organizations

Select your Explosive & Click on it

SYSTEMS

V1.8 released in December 2007

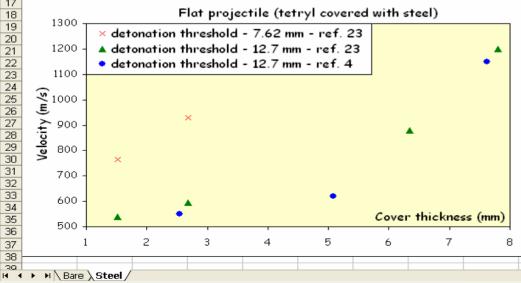
Version	Number of compositions	Number of results	Number of references
V1.8	86+Systems	1716	136

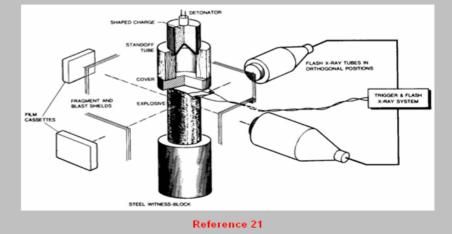


Fragment Impact Database - FRAID

Tests:

- Scale 1 (Full Scale)
- Small scale
- Numerical simulations
- Covered and bare configurations
- Different types of impactors
- Variation in angle of incidence



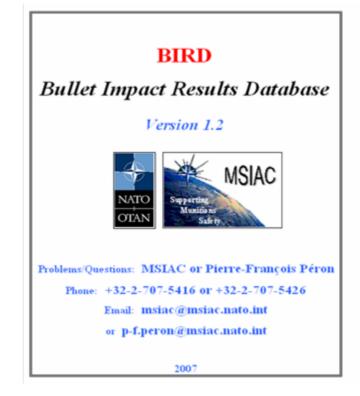


36

FRAID Datasheet Examples

		***************************************									100			4.00	
	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
1	TETRY	L													
2	Steel														
3															
4	ĺ	XPLOSIVE			COVERIN	G/CASING				PROJECTI	LE		RESULTS		
5	density (g/cm³)	process	state	thickness (mm)	diameter (mm)	length (mm)	nature	shape	nature	incidence (°)	velocity (m/s)	diameter or side (mm)	(detonation no detonation type III, IV, V, XDT,)	REMARKS	REFERENCES
6 7				2.54							550	12.7	detonation threshold	Data	4
7	1.5	porous	solid	5.08	-	-	-	flat	steel	0	620	12.7	detonation threshold	from reference 109	109
8				7.62							1150	12.7	detonation threshold		
9	1.54	_	solid	1.52	76	76	steel	flat	steel	o	766	7.62	detonation threshold	6.4 mm thick brass casing Data used for the	23
10				2.69							929	7.62	detonation threshold	determination of Jacob- Roslund model parameters	
11				1.52							539	12.7	detonation threshold	6.4 mm thick	
12 13	1.54		solid	2.69	76	76	steel	flat	steel		595	12.7	detonation threshold	brass casing Data used for the	23
13	1.54	-	Sulla	6.35	1 ′°	/6	steer	liat	steet	"	878	12.7	detonation threshold	determination of Jacob-	23
14				7.8	1						1200	12.7	detonation threshold	Roslund model parameters	
15	1.48	pressed	solid	136	38	< 100	-	shape charge jet	copper	0	3500	1.5	detonation threshold	MRL 38 mm shaped charge Bow shock initiation	21 (see below)
16										<u> </u>					
17 18 19	1300			lat proje				steel)				SHAL	PED CHARGE - DETONATOR		
18 19 20 21	1200	1		hreshold hreshold					•				STANDOFF TUBE		7

Bullet Impact Results Database : BIRD


- Current Version (V1.2) released in December 2007
- Large database of BI results (>2300)
 - wide range of composition
 - wide range of systems
 - fully searchable
- Comes with a Generic Testing Vehicle Database

MSIAC Unclassified

5.56mm
7.62mm
12.7mm
14.5mm
20mm
25mm
30mm

Test Vehicles

Version	5.56mm	7.62mm	12.7mm	14.5mm	20mm	25mm	30mm	Ref.	
V1.2	21	1194	1035	2	38	0	46	141	2336

SYmpathetic Reaction Database - SYR

- Excel database
- > 650 results
- Wide range of
 - explosive compositions
 - munitions / barriers
 - tested parameters
- Fully searchable

MSIAC Unclassified

SYR

SYmpathetic Reaction Database

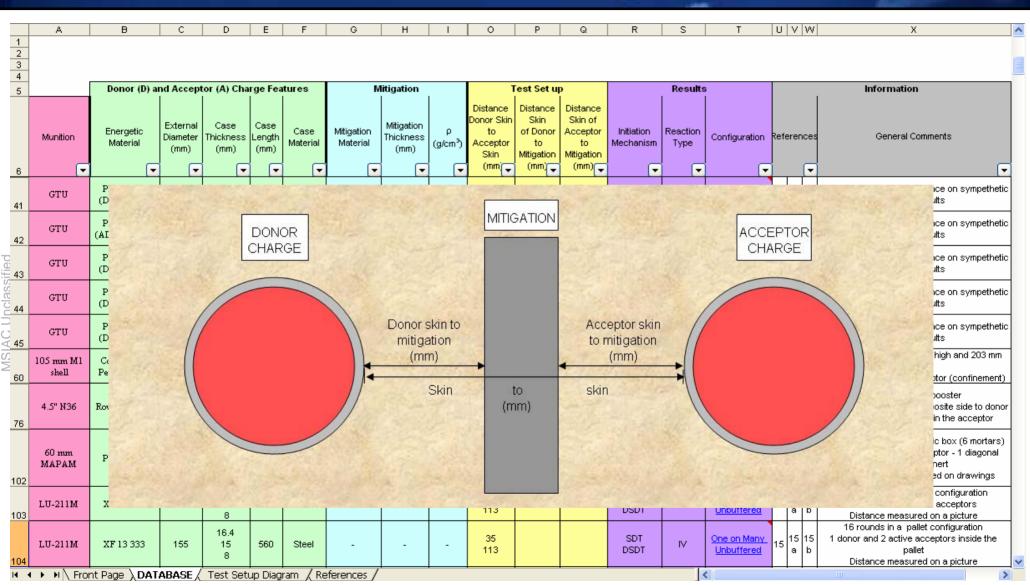
Version 1.2

Problems/Questions: MSIAC or Pierre-François PERON

Phone: (+32) 2 707 54 16 or (+32) 2 707 54 26

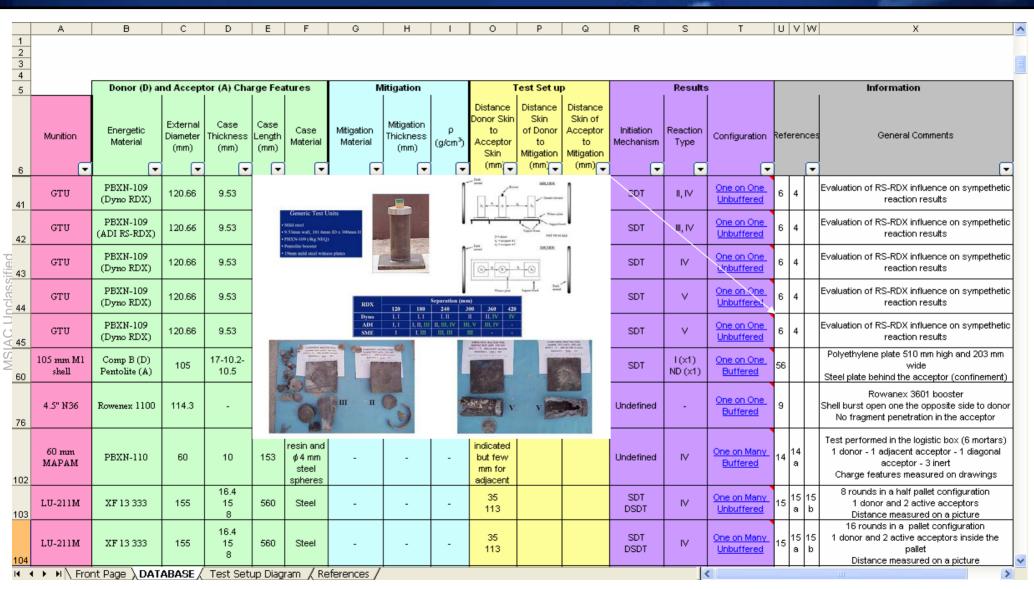
Email: msiac@msiac.nato.int

or p-f.peron@msiac.nato.int

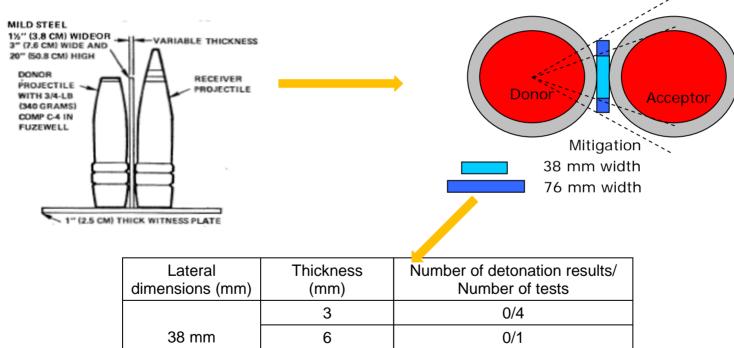

2008

SYR v1.2 released in December 2008

Version	Number of compositions	Number of results	Number of references				
1.2	101	670	109				



SYR - Database Content


SYR - Database Content

SYR – Application Example

- Influence of mitigation width on munition response
 - 127 mm US Navy shells filled with Composition A3
 - Steel mitigation 38 mm or 76 mm width
 - Shell response evaluation for various mitigation thickness

Shaped Charge Impact Database - DARTS

- Excel database
- Additional databases on
 - Shaped charges
 - Generic test units
- Pictures describing the setup and the results for most reported tests
- Fully searchable

V1.0 to be released in May 2009

DARTS

Database of Ammunition Reaction Trials to Shaped Charge Aggression

Version Beta

Problems/Questions: MSIAC or Pierre-François PERON

Phone: (+32) 2 707 54 16 or (+32) 2 707 54 26

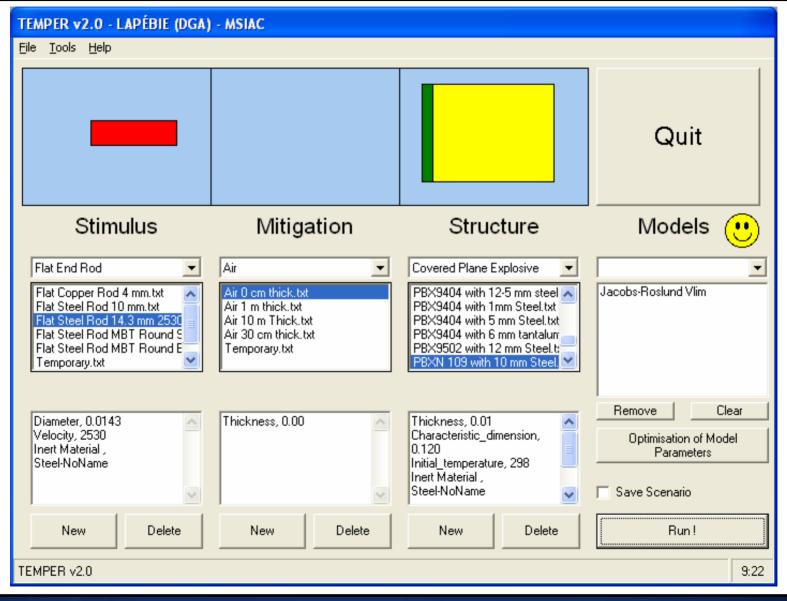
Email: msiac@msiac.nato.int or p-f.peron@msiac.nato.int

2008

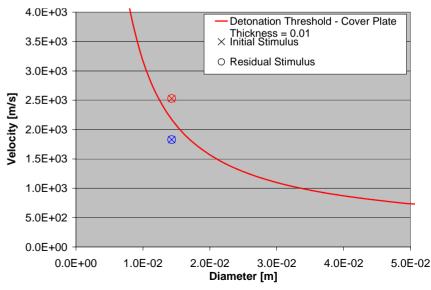
Version	Number of compositions	Number of results	Number of references
Beta	18	50	10

Database Searching Tool

- Available databases for all IM tests in 2009
- Another database related to gap test results (NEWGATES)
- All databases in Excel format with similar architectures
- Next step
 - Development of a search tool to gather quickly information available in all the databases
 - Search with one or several keywords, headings
 - Results in an Excel workbook (one or several worksheet per database)

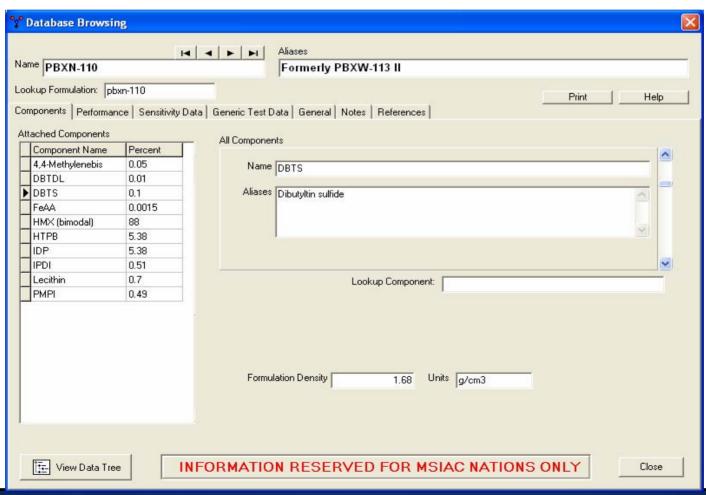



Toolbox of Engineering Models for the Prediction of Explosive Reactions (TEMPER)



TEMPER

- MSIAC in conjunction with DGA (French MOD) have been offering access to a French software program called TEMPER
- A library of empirical and analytical models dedicated to ammunition safety. It has the potential to become a reference tool if resources allocated
- MSIAC acts as a focal point to ensure coherence and availability. Users can develop custom models or enhance existing ones.
- TEMPER is flexible to afford multiple developers and therefore save time and money
- TEMPER is documented to ensure ease of further developments and ensure consistency
- TEMPER main features include
 - Library of threats, models and parameters to run the models
 - Ability to select threat/mitigation/structure/model
 - Ability to perform parametric or stochastic simulations
 - Ability to draw curves and save results



Example of Database Use for Engineering Work

- PBXN-110 has been selected as a candidate for the development of a new warhead with a steel envelop.
- Which IM level can be achieved with this explosive?

Example of Database Use for Engineering Work

NEWGATES

Number of available gap tests results	508			88	WaterGT res	ults		ISGT	results			NOL-LS6	3T results	
INTRO	rho0 [g/cm3]	CO [km/s]	s	gap length (mm)	Incident Initiation Pressure (Gpa)	Critical Initiation Pressure (Gpa)	number of cards	gap length (mm)	Incident Initiation Pressure (Gpa)	Critical Initiation Pressure (Gpa)—	number of cards	length (mm)	Incident Initiation Pressure (Gpa)	
Substance	· · · · ·	▼	▼	▼		· · · · · 🔻	▼	-	· · · · · ·	· · · · · ·	▼	▼		
PBXN-110	1.680	2.470	1.270		-	-			-	-	154	39.12	3.67	4.15
PBXN-110	1.680	2.470	1.270	17.0	2.3	3.21			-	-	178	45.21	2.69	3.06
PBXN-110	1.600	1.905	3.700	15.0	2.7	4.01			-	-			-	-
PBXN-110 (Dyno RS-HMX)	1.650	1.905	3.700	11.0	3.6	5.47			-	-			-	-
PBXN-110 (Dyno)	1.650	1.905	3.700		-	-			-	-	172	43.69	2.90	3.61
PBXN-110 (Bofors)	1.660	1.905	3.700		-	-			-	-	150	38.10	3.87	4.94
PBXN-110 (HAAP)	1.670	1.905	3.700		-	-			-	-	159	40.39	3.43	4.35
PBXN-110 (HAAP- 6 months old)	1.620	1.905	3.700		-	-			-	-	156	39.62	3.57	4.49
PBXN-110 (Bofors- 6 months old)	1.620	1.905	3.700		-	-			-	-	158	40.13	3.48	4.36
PBXN-110 (Dyno- 6 months old)	1.640	1.905	3,700		-	-			-	-	173	43.94	2.86	3.55

12.7 mm bullet impact

SYR

		Donor (D) al	na Accept	or (A) Char	ge reat	ures	IV	irtigation			rest Set up	•		Kesuπs			information
2	Munition	Energetic Material	External Diameter (mm)	Case Thickness (mm)	Case Length (mm)	Case Material	Mitigation Material	Mitigation Thickness (mm)	ρ (g/cm³)	Distance Donor Skin to Acceptor Skin (mm)	Skin of Donor to Mitigation	Distance Skin of Acceptor to Mitigation (mm)		Wechanism	Reaction Type	Į,	ces General Comments
	60 mm MAPAM	PBXN-110	60	10	153	Plastic resin and	-	-	-	Not indicated but close			One on Many Buffered	Undefined	IV	14 b	Mortars in their logistic container Charge features measured on drawings

BIRD

	TESTED SYSTEM											THE	TEST	TEST			REACTION LEVEL						
`	System Designation	Country of Test	Tested Item	Config ▼	Aim point ▼	Aim Point Design.	Energetic Material at Aim Poin	Case thickness at Aim Point (mm)	Material at Aim Poir		¥o (m/s)	Firing range (m	V impact (m/s)	Burst or Sing	Burst Timing (m:	Proc. ▼	Type I ▼	Type II	Type III ▼	Type I¥	Type ¥	NR 🕨	Other
,	2,75 inch Rocket (HYDRA-70)	US	٧	В	Warhead Fuze Booster	MK 146 Mod 0 MK 435 Mod 0	PBXN-110 PBXN-7	-	Steel	AP	-	-	850 +/-60	В	-	MIL-STD-2105B					1		
	2,75 inch Rocket (HYDRA-70)	US	٧	В	Warhead Center	MK 146 Mod 0	PBXN-110 (Cast)	-	Steel	AP	-	-	850 +/-60	В	-	MIL-STD-2105B					1		
	60mm Mortar Shell	CH	AUR	В	Warhead Center	MAPAM	PBXN-110	-	Steel	AP	-	-	850 +/-60	s	-	MIL-STD-2105B					2		
	60mm Mortar Shell	СН	AUR	В	Warhead Booster	MAPAM	PBXN-110 PBXN-5	-	Steel	AP	-	-	850 +/-60	s	-	MIL-STD-2105B					2		
	UN Steel Tube	NW	GTU	В	Center	-	PBXN-110	4	Steel	AP M2	840 +/-40	-	-	s	-	EIDS 7(d)(i) Test						3	

MSIAC Example of Database Use for Engineering Work EXPLOSIVE COVERING/CASING **f**detonation diameter REFERENCES REMARKS densitu thicknes diamete length incidenc velocitu state nature shape nature or side no detonation process s (mm) r (mm) (mm) (m/s) (g/cm³) type III, IV, V, XDT (mm) Test according to MIL-STD-2105 B 46

1829

2266

0

0

steel

steel

conical

1401

(16 g)

conical

1601

(18.6 q)

123 type III (x3) Unit (NFTU) used as a target ≤2 cubes 2530 12.7 9.5 203.2 406.2 (40.4) na 1 (u4) SYSTEM INFORMATION THREAT TEST REACTION LEVEL Tested System System Feste d Caliber Energetic Burst or Velocity Type Clas. ltem Proc. NR Other Designation Item Singla (mm) Material (m/s) Design -PBXN-110 60mm Mortar MAPAM GMA AUR S 2105B 70 PBXN-5 VVDU-41/B Mk **PBXN 110** 2504 AMRAAM AIM-120A AAW 127 2105B 100 80 Mod 0

12.7

14.3

14.3

tupe IV

type V

type I

FRAID

4.06

5.1

55.12

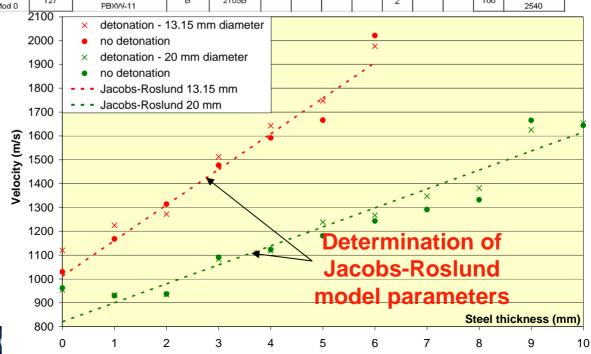
76

199,90

steel

steel

99.8% TMD


MSIAC Unclassified

cast-cured

cast-cured

solid

solid

47

(see below)

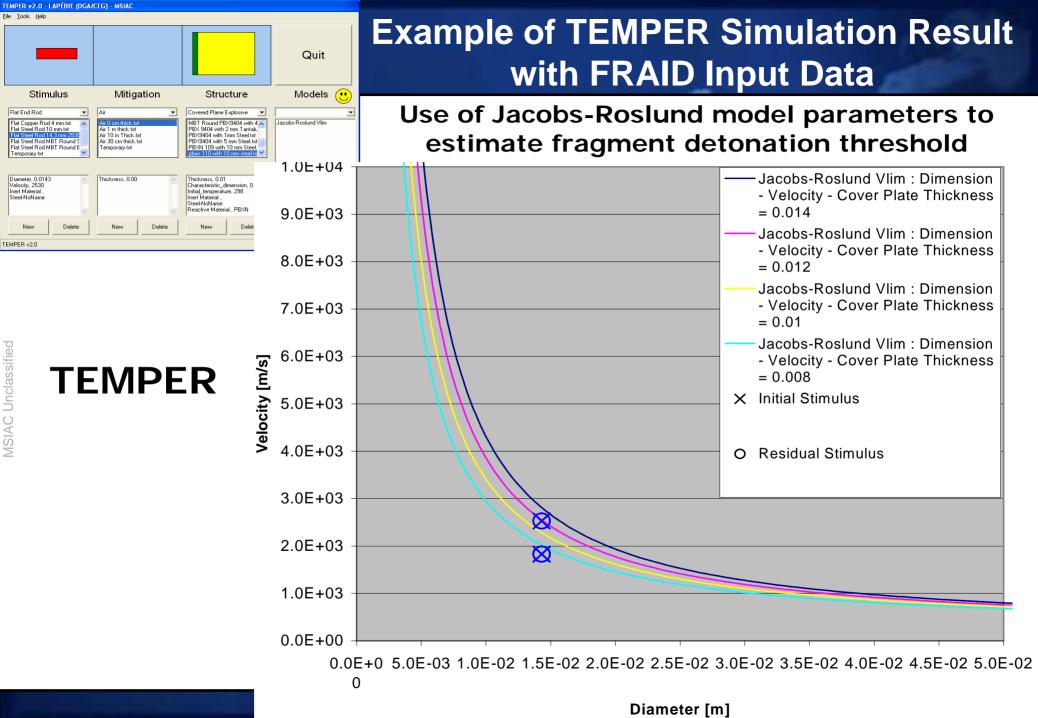
(see below)

(alternate test procedure #1)

Target: UN steel pipe for EIDS bullet

Worst result over 2 tests
Shaped charge application
Test performed to replace the

explosive composition of the


HYDRA-70 rocket

STANAG 4496 fragment

Test conducted in accordance with

MIL-STD-2105 B

Modified Naturally Fragmenting Test

M Munitions

S Safety

I Information

A Analysis

C Center

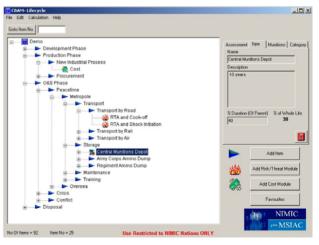
Web site http://www.msiac.nato.int

e-mail msiac@msiac.nato.int

Safety Assessment Software - SAS

- SAS is a tool for the development of Safety and Suitability for Service assessment of munitions. It assists the user to:
 - define the common threats to the munition
- The life cycle of the munition is developed using AOP 15 Annex A
- Environmental constraints are input based upon the user requirements
- SAS will identify relevant standards and make them available
- A report of all identified trials documentation can be exported in Word Excel or TXT formats.
- An electronic document database of international (UN, NATO) and several national standards applicable to munitions is included.

Current version released January 2007



Cost Benefit Analysis Model: CBAM v2.0

A tool to help calculate the cost differences of introducing IM into service

- It can also be used to calculate the cost of ownership of a munition
- CBAM calculates cost differences by:
 - Aiding in the creation of a life cycle for a munition type
 - Life-cycle Tree creation component
 - Providing a structured method for compiling cost data
 - Modules to account for cost differences arising from:
 - Risk Assessment & Direct cost
 - Calculates cost by means of a Monte Carlo Simulation
 - Takes into account the uncertainties

