

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Lightweight Small Arms Technologies May 2009

Contact: Mrs. Kori Phillips
US Army ARDEC
(973) 724-7912
korene.phillips@us.army.mil

Mr. Paul Shipley AAI Corporation (410) 628-3462 shipley@aaicorp.com

Question #1: Why do we need to make weapons and ammunition lighter?

"Today, the average soldier load consists of a rucksack, weapon, ammunition, helmet, and other gear; the total weight can range from 63-130+ pounds depending on the variables of mission type, duration, and environment."

"...infantry Soldiers carrying a load of 101 pounds for 12.5 miles had a decrease of 26% in marksmanship (number of targets hit), a 33% increase in distance from the target center, and an increase in back pain compared to pre-load and march scores."

GEN Peter W. Chiarelli Vice Chief of Staff, United States Army Before the House Appropriations Committee Subcommittee on Defense March 11, 2009

Question #2: How is this different from other efforts to lighten the load?

- Three main issues with polymer 5.56mm ammo:
 - Heat build-up in chamber
 - Unsupported area of case
 - Extraction loads

- LSAT:
- → Separate, rotating chamber
- → Fully supported cartridge case
- → Push-through feed and eject

- Purpose-designed weapon:
 - Make it lighter without losing any capability
 - Barrel length, muzzle velocity, range, dispersion, rate of fire...
 - Total weapon weight: 9.5 lbs (45% less than current)
- Modeling & Simulation:
 - 15 different M&S tools used
 - Everything from internal ballistics, finite element analysis, and thermal analysis, to dynamic function of the complete system
 - We even model Life Cycle Cost, training requirements, and maintenance...

Question #3: Why are you doing CT, instead of focusing only on CL?

- Three main reasons:
 - Low risk
 - Significant weight reduction
 - Provides baseline
- Cased Telescoped Ammunition:
 - Over 10,000 rounds fired
 - Temperatures from -65F to +160F
 - 35-40% weight reduction
 - 10-15% volume reduction
- Cased Telescoped Light Machine Guns:
 - Conducted 4 major live fire demos
 - Beginning fabrication of third weapon
 - 45% weight reduction

Question #4: What's the deal with that "rotating" chamber?

- Straight through feed and eject:
 - Allows use of cylindrical ammunition and circumferential polymer links
 - Increases reliability
 - No ejection groove required
- Ammunition fully supported in chamber:
 - Allows use of lightweight polymers with no additional reinforcement in base
- Thermal Management:
 - Isolated from barrel
 - Movement disperses heat

Cartridge Rammed From Feed Tray Spent Cartridge Ejected from Chamber

Chamber Rotates into Feed Position

Question #5: What kind of dispersion does the CT system have?

Question #6: How do you seal the caseless chamber?

- Two piece sliding chamber
 - Seals at breech and barrel faces
 - Allows expansion of propellant gases
- Sealed firing pin uses rotating motion rather than linear motion

Propellant ignition pressurizes the chamber

Question #6: How do you seal the caseless chamber?

- Two piece sliding chamber
 - Seals at breech and barrel faces
 - Allows expansion of propellant gases
- Sealed firing pin uses rotating motion rather than linear motion

Chamber pressure acts on axial faces to spread chamber segments apart

Question #6: How do you seal the caseless chamber?

- Two piece sliding chamber
 - Seals at breech and barrel faces
 - Allows expansion of propellant gases
- Sealed firing pin uses rotating motion rather than linear motion

Chamber pressure completes spreading chamber segments apart

Question #6: How do you seal the caseless chamber?

- Two piece sliding chamber
 - Seals at breech and barrel faces
 - Allows expansion of propellant gases
- Sealed firing pin uses rotating motion rather than linear motion

Chamber pressure completes spreading chamber segments apart

Question #7: What gets ejected from the caseless weapon?

Question #8: Where else can we apply this technology?

- Ammunition calibers/configurations
 - Investigating "intermediate" calibers
 - Evaluation of Green Ammo projectile
- Weapon configurations
 - Rifle (in work)
 - Medium Machine Gun
 - Sniper Rifle

Question #9: Is it affordable?

- Weapon:
 - Current weapon costs used as baseline
 - Designed for ease of manufacturing and maintenance
 - Uses readily available materials
- Advantages of polymer
 - Uses conventional molding process
 - Can be outsourced to multiple suppliers
 - Adaptable to current assembly line
- Caseless:
 - Previous efforts proved feasibility
 - Future efforts focused on reducing cost

Relative cost :

M1 Tank - \$4.5 M

ISF-\$83 M TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Question #10: When is this going to be fielded?

- Joint Capability Technology Demonstration
 - Purpose: to demonstrate military utility of lightweight small arms technology
 - Timeframe: Demonstration in 2011
 - Status: On hold pending DA approval
- Field Assistance in Science and Technology (FAST) team in Afghanistan
 - LSAT team responded to request for information in April
 - Feedback: "...a lot of people here like your program. If it were more mature, we'd get an ONS out..."

Demo :

- Conducted multiple demos already (one for this conference in 2007)
- Looking to schedule more USMC, SOCOM…
- Generate interest, possible requirements

Questions?

