

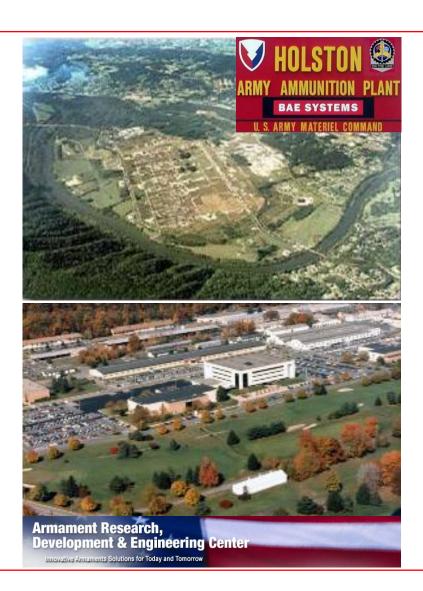
Recent Developments in Composition C-4: Towards an Alternate Binder and Reduced Sensitivity

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

Paul Vinh RDECOM-ARDEC, Picatinny Arsenal

Presentation Outline

- Research Extrudable Moldable Insensitive eXplosive (OSX-REMIX)
 - Background
 - **Program Objectives**
 - Technical Approach
 - Formulation and Evaluation
 - Summary
- Alternate Plastic-binder Extrudable eXplosive (OSX-APEX)
 - Background
 - **Program Objectives**
 - **Technical Approach**
 - **Formulation**
 - Modified Accelerated Aging Trial
 - Summary

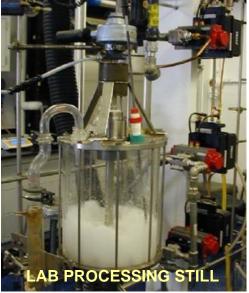


Acknowledgement

- PM-CCS
 - Mr. Felix Costa
- RDECOM-ARDEC
 - Mr. Paul Vinh
 - Mr. Sanjeev Singh
 - Mr. Gregory Tremarco
- BAE SYSTEMS OSI
 - Mr. Jim Haynes
 - Ms. Kelly Guntrum
 - Mr. Alberto Carrillo
 - Mr. Matt Hathaway
 - Mr. Brian Alexander

OSX-REMIX – Program Objectives

- Composition C-4 already fares well in the arena of insensitivity, due to relatively large amount of binder.
 - Passes Bullet Impact and Fragment Impact (Army) sensitivity tests at ambient temperature.
 - Fails shock stimulus Sympathetic Detonation and Shaped Charge Jet.
- BAE's task to develop an alternate extrudable formulation with similar physical and energy output characteristics, while enhancing its insensitivity.
 - Maintain current binder configuration for comparison to standard C-4.
 - Identify modifications to process or alternate input energetics.
 - Formulate and evaluate physical and energetic properties.



OSX-REMIX – Technical Approach

- Modification to manufacturing process.
 - Maintain aqueous slurry-coating process.
 - Premixing RDX with fluid portion of binder (DOA/Oil).
 - Reduced sensitivity in Melt Cast applications.
- Modification of traditional formulation.
 - Manipulation of Coarse: Fine.
 - Finer particle nitramine has shown decreased shock sensitivity.
 - Manipulation of nitramine energetic input.
 - FEM RDX.
 - HMX may prove lower shock sensitivity.

OSX-REMIX – Technical Approach

- New, readily available, energetic ingredient to replace some or all RDX.
 - 3-nitrotriazol-5-one (NTO) has shown promise as next-generation ingredient in IM formulations.
 - Comparable energy to RDX, decreased sensitivity.
 - Water solubility proves challenging in aqueous slurry system.
 - 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is comparable to RDX in energy output, and shows high stability to thermal, shock, and impact/friction stimulus.
 - High cost.
 - Perfectly suited for aqueous slurry-coating manufacturing process.
 - Available in two particle sizes (5μm, 40μm).

$$O_2$$
 O_2 O_2

TATB

OSX-REMIX – Modification of Current C-4 Formulation

Modification	Moldability (physical feel)	NOL LSGT (50% card gap)
None – Standard C-4 for baseline		150 – 160 cards
Premix RDX with DOA portion of binder	Identical to Standard	No improvement
Coarse : Fine 2:1	More firm, harder to mold	No improvement
Replace Fine RDX with CL5 HMX	Slightly tougher than Standard C-4	No improvement
Replace Fine RDX with 2.8um FEM RDX	Significantly less moldable	No improvement

- Samples for LSGT were prepared by mechanically pressing bulk C-4 to a density of 1.55
 1.65 g/cc. Four pellets of equivalent mass / density filled each tube.
- Insensitive candidates were tested at 135 cards (two shots).
 - 10% decrease in sensitivity deemed significant enough for further testing.

OSX-REMIX – New Energetic Components

Modification	Moldability (physical feel)	NOL LSGT (50% card gap)
None – Standard C-4 for baseline		150 – 160 cards
Replace Fine RDX with 5µm TATB	Very poor compared to Standard	No improvement
Replace Fine RDX with 40µm TATB	Comparable to Standard	142.5 cards

40µm TATB replacing the standard CL5 RDX shows some promise in reducing

shock sensitivity.

Plate Dent testing shows comparable blast performance (96% of standard C-4).

Examination of LSGT plates tells different story.

OSX-REMIX – New Energetic Components

OSX-REMIX – Summary and Conclusions

- As proof of concept, an extrudable, moldable formulation with enhanced IM properties was conceived and manufactured at laboratory scale.
 - Modification to nitramine used or coarse / fine ratio did not show significant changes to shock sensitivity.
 - 40µm TATB replaces CL5 RDX in standard Composition C-4 formulation, but provides an inferior general purpose demolition explosive.
 - High cost TATB.
 - Poor metal-cutting properties.
 - Standard aqueous slurry coating process precludes the use of more economical energetic candidates of interest.

OSX-APEX - Background

- Composition C-4 is a legacy explosive formulation with decades of use.
 - 90.5% RDX.
 - Specific ratio of coarse to fine RDX.
 - 9.5% plastic binder.
 - High molecular weight polyisobutylene (PIB).
 - Dioctyladipate (DOA).
 - Lightweight motor oil (Oil).
- Composition C-4 is mainly used for demolition purposes.
 - M112 Demolition Charge.
 - M183 Demo Kit.
 - MICLIC.
 - M18A1 Claymore Mine.

OSX-APEX - Background

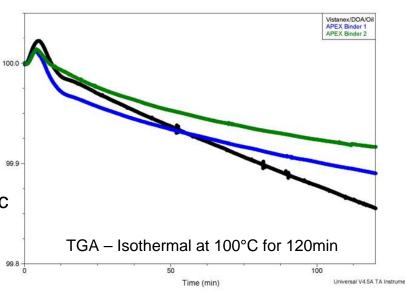
- Composition C-4 is extruded to generate the M112 Block.
 - M112 blocks should be moldable / pliable.
 - Blocks have shown poor physical characteristics after long-term storage.
 - Dry, crumbly feel.
 - Onsite rework with additional plasticizer (motor oil) necessary, timeconsuming, and potentially hazardous.

OSX-APEX – Program Objectives

- Explore and formulate an extrudable demolition explosive comparable to Composition C-4.
 - Equivalent energy output and blast effect.
 - Comparable physical properties and moldability.
- Enhance long-term storage issues with an alternate binder.
 - Accelerated aging trial.
 - Intrinsic viscosity.
- Produce large-scale manufactured quantities of an acceptable material for M112 production and trials.

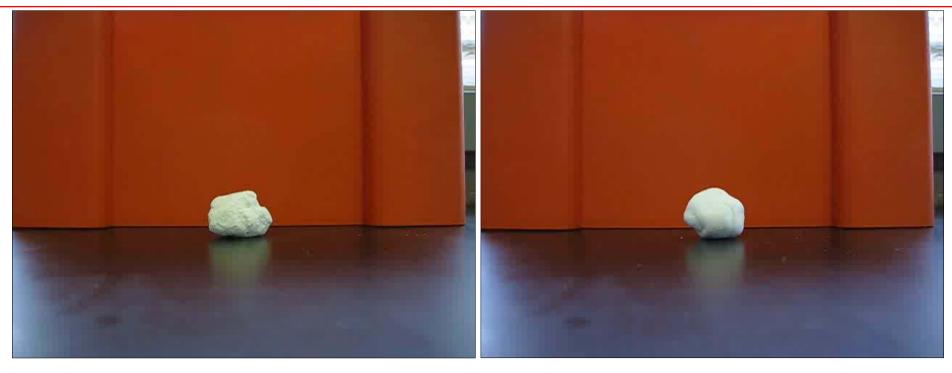
OSX-APEX – Technical Approach

- Current binder is 9.5% of Composition C-4.
 - 25% of binder is a high molecular weight polyisobutylene rubber.
 - 75% of binder is a combination of dioctyladipate (DOA) and lightweight motor oil.
 - Both low molecular weight liquids at ambient.
 - DOA has historic tendency to leech and exude from certain premixes.
 - Large disparity between molecular weights (viscosities) of polymer and plasticizer may have resulted in these components not complementing one another.
 - Nonuniformity of coating during manufacturing process.
 - Segregation during drying, tagging, packaging.
 - Ultimately poor aging characteristics due to exudation and leeching.
- Replace standard binder with a set of components with similar chemistry and viscosity.
 - Better match.
 - Treat binder as a "system", allowing for ease of modification for unique applications.



OSX-APEX – Technical Approach

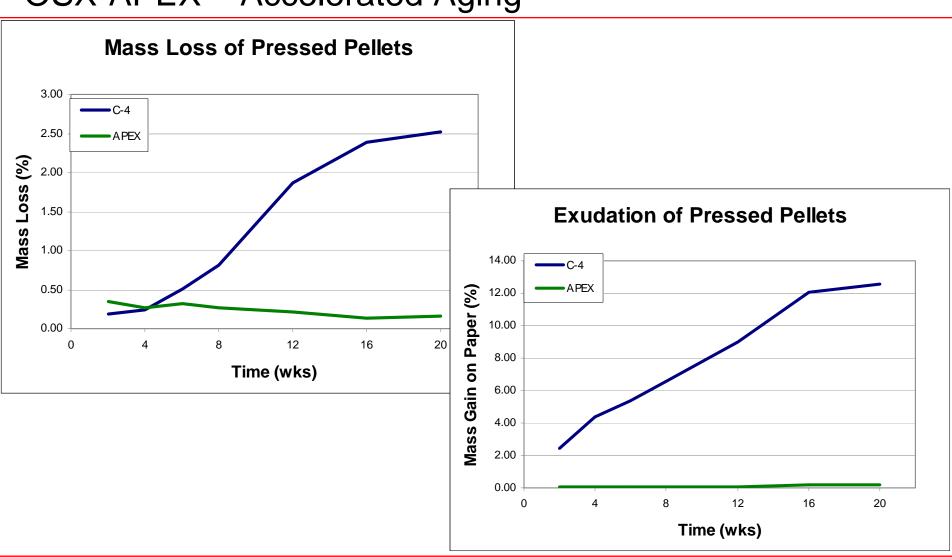
- Polyisobutylene is well-suited for moldable, extrudable explosive formulation.
 - Physical properties.
 - Available in a wide range of molecular weights.
- Complementary component sought for the high molecular weight PIB.
 - Liquid PIB oligomers available in a range of viscosities.
 - Oligomeric constituents should provide increased stability to leeching and exudation.
 - Heavily utilized in cosmetic and personal care industries.
 - Comparable in price to DOA and motor oil.
- Initial investigation gave promising results.
 - Easily dropped in to current slurry coating manufacturing process.
 - Current analytical regime performs well in new system.
 - Blends of PIB polymers and oligomers show good thermal stability via Thermal Gravimetric Analysis (TGA).

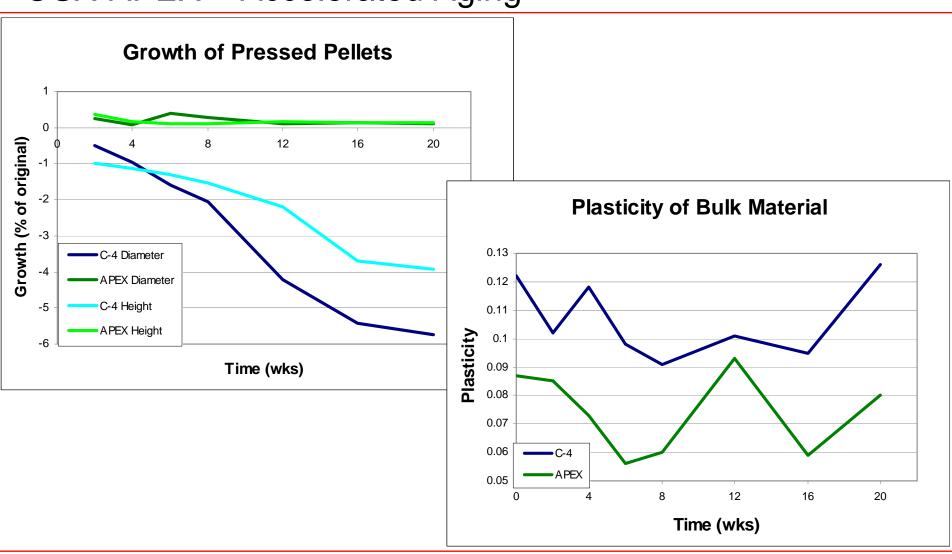


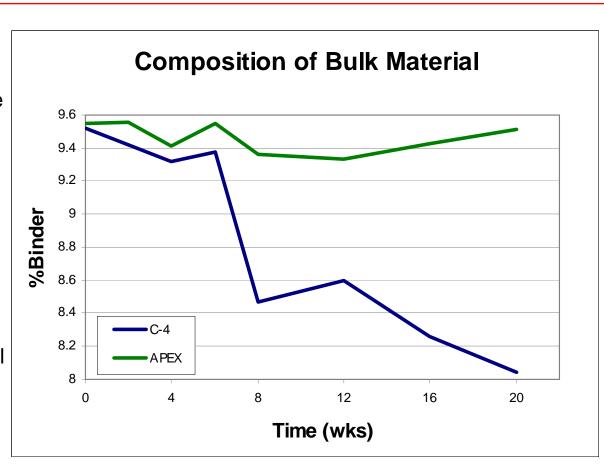
OSX-APEX – Formulation and Evaluation



- Several binder system candidates were formulated at laboratory scale for evaluation.
 - Particle size distribution of energetic input is same as standard Composition C-4.
 - APEX binder systems easily dropped in to standard slurry coating process.
 - Lab scale manufacture of standard binder C-4 performed as baseline for comparison.
- All analytical testing, as well as qualitative "look and feel" tests show that alternate binder systems are comparable to legacy Composition C-4.


- After initial laboratory investigation and testing was completed, accelerated aging trials were initiated.
- Standard binder C-4 and OSX-APEX were prepared using identical input RDX batches and octane source (3 lb. scale for both).
- Aging performed at 75°C on bulk material and mechanically pressed pellets.
 - Composition and plasticity and "feel" of bulk material.
 - Growth, exudation, and mass loss of pressed pellets.





- Accelerated aging trial shows OSX-APEX fares very well in comparison to Composition C-4.
- APEX is significantly more stable to growth / shrinkage.
- APEX has virtually no exudation issues; Paper under standard Composition C-4 is literally wet with DOA / Oil plasticizer.
- APEX's mass and composition are very stable over time; C-4 loses over 15% of its binder over 20 weeks.
- Significant differences in material "feel".
 - Comp C-4 becomes grainy, soft, and crumbly over time.
 - APEX retains good physical characteristics at 20 weeks.
 - Plasticity data inconclusive, as it contradicts the "feel" test.

Conclusions and Future Endeavors

- OSX-APEX has been developed as an alternate extrudable demolition explosive.
 - Comparable physical properties as newly manufactured Composition C-4.
 - Superior physical characteristics after accelerated aging trial.
 - By developing a binder "system", individual applications may have unique formulation tailored for use.
- Future endeavors include further evaluation of physical parameters.
 - Simulation of actual production environment.
 - Lab-scale drying kettle.
 - Lab-scale conical mixer.
 - Intrinsic viscosity via capillary rheometry.
- Verify OSX-APEX sensitivity and performance properties.
- Large scale manufacture of OSX-APEX.
 - M112 Charge Demolition Block configuration.

Questions?

