

THERMAL ANALYSIS OF IMX-101 THROUGH LARGE SCALE SLOW COOK OFF TESTING

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

Alberto Carrillo* BAE SYSTEMS OSI, Holston Army Ammunition Plant

1

Why Investigate Thermal Hazards?

- Exposure to elevated temperatures over time can lead to
 - Decomposition
 - Self-heating
 - Point at which heat generated exceeds heat lost to surroundings
 - Can lead to both catastrophic and non-catastrophic events
- An assessment of an energetic material's thermal hazards are necessary to determine safety margins for processing and loading
 - Critical Temperature (T_c) is utilized most often to asses the thermal hazards associated with processing and loading of melt cast energetic materials
 - Defined as the lowest constant temperature at which a given material of a specific shape and size will catastrophically self heat
 - Affected by mass and shape
 - Several mathematical models for T_c determination exist

Required Testing for Qualification

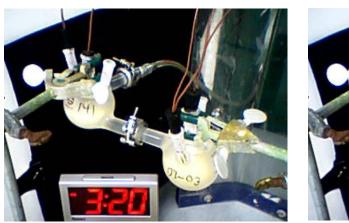
- Mandatory Thermal Evaluations for Qualifications of Explosive
 - Critical Temperature Calculation
 - Test Method 1074 of MIL-STD-1751A
 - Mathematical determination utilizing Differential Scanning Calorimetry (DSC)
 - 1 Liter Cook Off Test
 - Test Method 1075 of MIL-STD1751A
 - Slow heating (3.3°C/hr) of material to determine self-heating temperature
 - Evaluation of decomposition reaction
 - Results from both tests and thermal models used to predict T_c at large scale
 - Frank-Kamenetskii (F-K) model for conductive heat transfer with no agitation

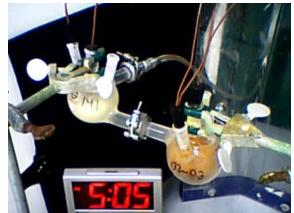
$$T_{c} = \left(\frac{E_{a}}{R} \ln\left(\frac{d^{2}\rho QZE_{a}}{T_{c}^{2}\lambda\delta R}\right)\right)$$

• Semenov model for convective heat transfer with agitation

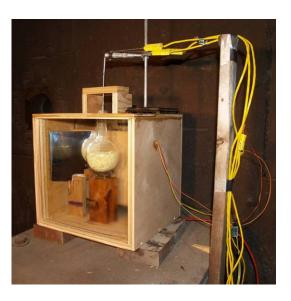
$$T_{c} = \left(\frac{E_{a}}{R} \ln\left(\frac{T_{c}^{2}S\alpha R}{V\rho QZE_{a}}\right)\right)$$

Background


- IMX–101 is a non-traditional IM Melt Cast Formulation
 - Manufactured at HSAAP utilizing existing infrastructure
 - Melting point of 96°C to 98°C by DSC
 - Processed at greater than 100°C
- 1 Liter Cook Off
 - Experienced <u>non-catastrophic</u> event between 142°C and 149°C
 - Predictions for T_c using F-K and Semenov models are extremely conservative
 - F-K extrapolates to value below melting point at large diameters
 - Semenov extrapolates to a T_c of 130°C at large diameters
 - Result (with scaling effect considered), suggested IMX-101 was not safe to handle in large scale production as its T_c was considered too low
- Holston Small Scale Cook Off Testing
 - Various amounts (small scale) tested at fast and slow heating rates also experienced mild thermal event between 145°C and 155°C
 - Similar finding to the 1 Liter Cook Off Test, suggests T_c prediction is <u>not</u> affected by <u>reduction</u> in material mass

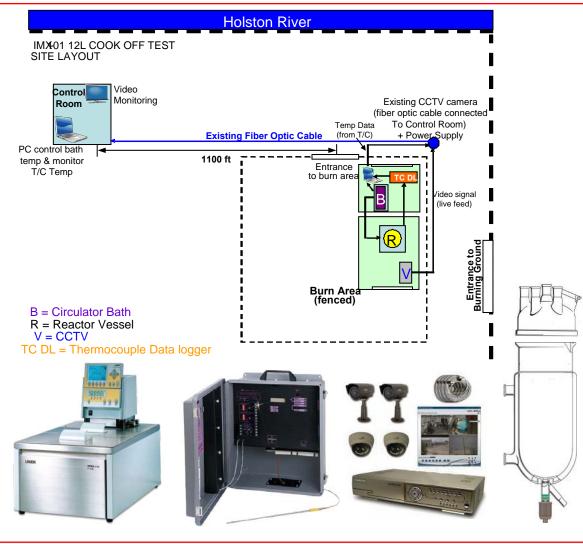


Background (cont)


Holston Small Scale Cook Off Test

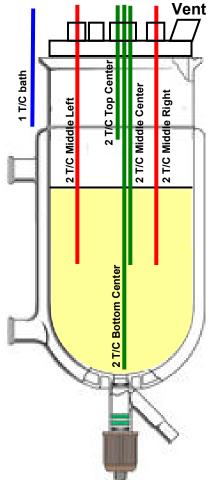
1 Liter Cook Off Test

Photos of 1 Liter Cook Off Test courtesy of US Army Research Laboratory (ARL)



Objective

- Determine whether the scaling effect for T_c, as predicted by both the F-K and Semenov Models exist for non-traditional melt pour formulation IMX–101 in a larger configuration
 - Compare T_c between Small Scale, 1L, and 12L Cook Off Test
 - Demonstrate that thermal event is independent of kettle size
- 12 Liter Cook Off Test
 - Increase amount from 1 Liter Cook Off Test by factor of 12
 - Utilize 15 liter jacketed reactor with geometry closer to production melt kettles
 - Heat at rate of 3.3°C/hr

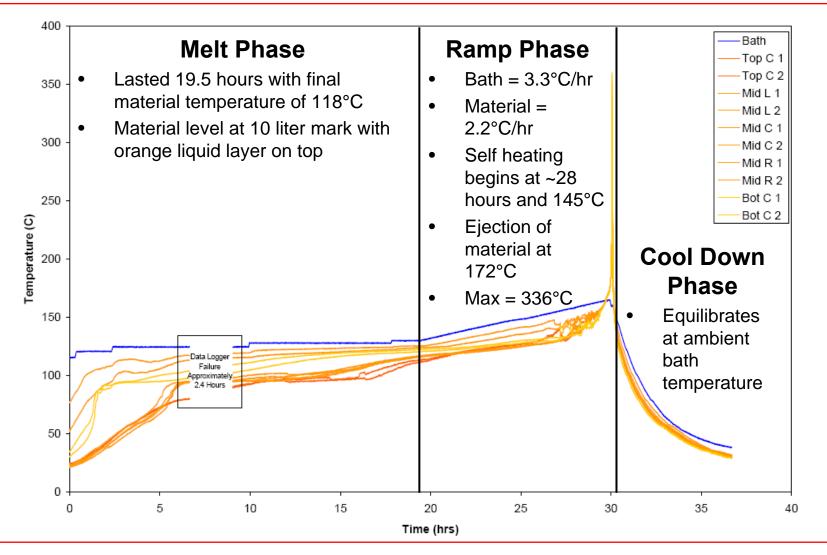

12 Liter Cook Off Test Site Layout

- Control Room located 1100
 feet from actual test site
- All equipment must have remote capabilities
 - Data logger, CCTV, heating bath
- Tap into existing power and fiber optic network
 - Containment of test vessel
 - 15 Liter reactor separate from other equipment
- Cannot enter test site upon start of test

Thermocouple Placement

BAE SYSTEMS

Test Setup

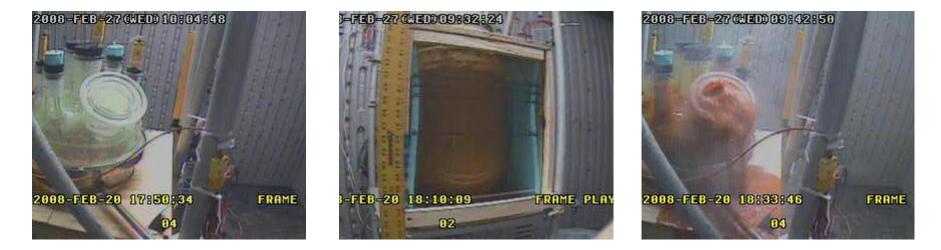


Thermocouple Data

Melt Phase

Start of Melt Phase	Middle of Melt Phase	End of Melt Phase
0 Hours into test	8.5 Hours into test	19.5 Hours into test
Bath Temp = 115°C	Bath Temp = ~124°C	Bath Temp = 130°C
Material Temp = 35°C	Material Temp = ~98°C	Material Temp = 118°C

Ramp Phase (Prior to 29 Hours)



Early in Ramp Phase	Middle of Ramp Phase	Late in Ramp Phase
20.5 Hours into test	25.5 Hours into test	28.5 Hours into test
Bath Temp = 134°C	Bath Temp = 150°C	Bath Temp = 160°C
Material Temp = 120°C	Material Temp = 130°C	Material Temp = 144°C

Ramp Phase (29 Hours)

Smoking Start	Self Heating at ~3x Rate	Beginning of Ejection
29.1 Hours into test	29.5 Hours into test	29.9 Hours into test
Bath Temp = 162°C	Bath Temp = 163°C	Bath Temp = 164°C
Material Temp = 150°C	Material Temp = 158°C	Material Temp = 172°C

2008-738-27 (1)30

Ejection of Material

2008-FEB-20 13:32 0	2008-FEB-20 10:02 008-FEB-20 10:02 008-FEB-20 10:02 00	2008-FEB-28 18:35 E	2008-FEB-20 10:33 008-FEB-20 10:33	2008-FEB-20 18:33 0	2008-FEB-20 18:
18:32:04	18:32:57	18:33:21	18:33:23	18:33:46	18:34:04
Bath	Bath	Bath	Bath	Bath	Bath
164.5°C	164.4°C	164.4°C	164.5°C	164.9°C	164.5°C
Material	Material	Material	Material	Material	Material
170.7°C	171.5°C	171.6°C	171.9°C	172.2°C	172.7°C

2008-738-27043008 2008-738-738-27043008 2008-738-738-27043008 2008-738-27043008 2008-738-2704308

Temperature Max/Camera Obscuration

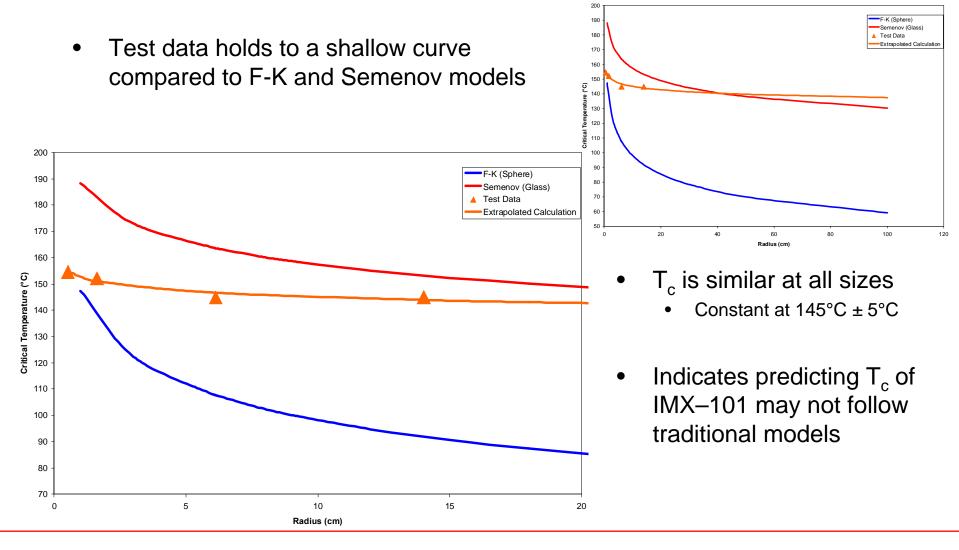
2008-FEB-27 (LED) (09:50:20 2008-FEB-20 18:42:02 04	2009-APR-07 (TUE) 09:44:28 31 02 2008-FEB-20 18:44:06 FRAME PAUSE 33 04	2008-FEB-20 18:44:05 FRAME PLI 84	
Maximum Material Temperature	Obscuration of Camera	Obscuration of Camera	
30.0 Hours into test	30.1 Hours into test	30.1 Hours into test	
Bath Temp = 165°C	Bath Temp = 160°C	Bath Temp = 160°C	
Material Temp = 336°C	Material Temp = 252°C	Material Temp = 252°C	

Cool Down Phase

Camera 1	Camera 2	Camera 4
30.8 Hours into test	30.8 Hours into test	30.8 Hours into test
Bath Temp = 123°C	Bath Temp = 123°C	Bath Temp = 123°C
Material Temp = 106°C	Material Temp = 106°C	Material Temp = 106°C

Post Test Observations

- Shed
 - Coated with yellow powder (inside and outside)
 - Considerable amount of ejected material with splatter on walls
 - No visual signs of burning or damage
- Reactor
 - Coated with material and undamaged
- Thermocouples
 - Still functioning
- Material
 - Post test analysis indicates ejected material is primarily IMX-101



Experimental Data vs. Predictions

Conclusions

- 12 Liter Cook Off Test
 - IMX–101 displayed start of self heating at 145°C and <u>non-catastrophic</u> thermal event at 172°C
 - Results similar to results from 1 Liter Cook Off Test and Small Scale Cook Off Testing
- IMX–101
 - Critical Temperature prediction based on the F-K and Semenov model did not apply to IMX-101
 - Scaling effect not applicable
 - Thermal event resulted in ejection of hot material from vessel, a <u>non-</u> <u>catastrophic</u> event

Conclusions (cont)

- Thermal Hazards
 - Conservative estimates obtained from F-K and Semenov models
 - IMX-101 proven to be safe to process/load on large scale with appropriate control measures
 - Official statement from Energetic Materials Qualification Board:

"The EMQB considered the results of both tests and has affirmed an acceptable safety margin of ≥40°C over the typical IMX-101 processing temperature..."

"The EMQB Explosives Subcommittee concurs that IMX-101 is safe to handle, process, and load in large production/loading environments"

Acknowledgements

- BAE Systems/HSAAP
 - Mr. Brian Alexander
 - Mr. Virgil Fung
 - Mr. Jim Owens
 - Mr. Curtis Teague

- RDECOM-ARDEC/PM-CAS
 - Mr. Charlie Patel
 - Mr. Crane Robinson
 - Dr. Kenneth Lee
- ARL
 - Dr. Brian Roos

Questions?