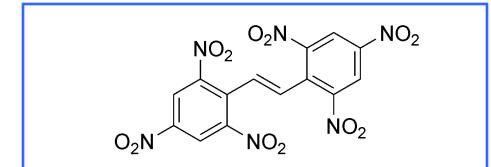
Process Improvement Studies for Scale-Up of HNS at Holston Army Ammunition Plant


Dr. Jacob Morris*, Gary Clark, Dr. David Price BAE SYSTEMS OSI, Holston Army Ammunition Plant

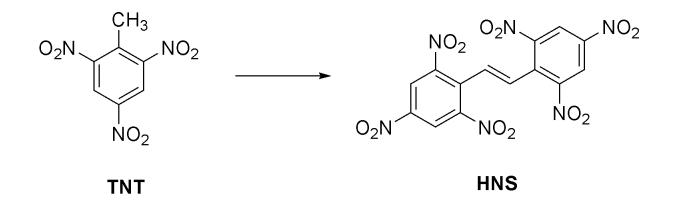
Background - HNS

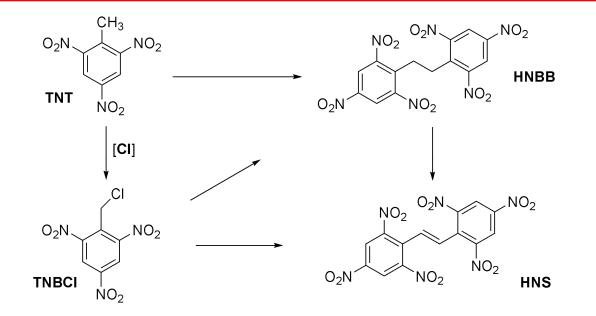
- Thermally stable energetic material
- Moderate sensitivity
- Broad range of uses:
 - Military, aviation, space applications
 - Oil and gas well perforating
 - Detonating cords
 - Exploding foil initiators
 - Crystal modifying additive in TNT

2,2',4,4',6,6'-Hexanitrostilbene (HNS)

- m.p. = 316 318 °C
- Detonation Velocity: 7120 m/s
- Oxygen Balance: -67.6% m/m
- Heat of explosion: 4393 kJ/kg
- ERL Impact Sensitivity: 63 cm

Program Objectives


- Viable Process for Manufacture of HNS at HSAAP
- Use Existing HSAAP Infrastructure
- Competitive Cost
- Meet Requirements of Military and the Oil & Gas Industries
 - Thermal Stability-Deeper Wells, Higher Temperatures
 - Formulation-amenable


Known Routes: 1-Step Reactions

- Shipp (1964): NaOCI, THF, MeOH
- Kompolthy (1976):, Co/Cu complex, O₂, Base, Polar Aprotic Solvent (PAS)
- Duffin & Golding (1984): Carboxylate base, O₂, PAS
- Duffin & Golding (1987): CuCl₂, Carboxylate base, PAS

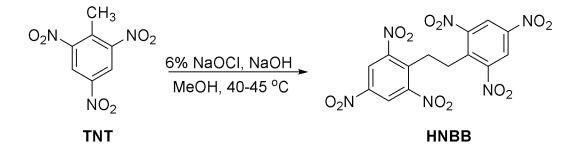
IMEMTS 2009

Known Routes: Multi-Step Reactions

- Kompolthy (1976): HNBB, O₂, Copper complex, Base, PAS
- Gilbert (1980): HNBB, O₂, Copper complex, Base, PAS
- Sollott (1981): TNBCI, THF, Methanol, Base
- Duffin & Golding (1984): HNBB, Carboxylate base, O₂, PAS

IMEMTS 2009

Challenges

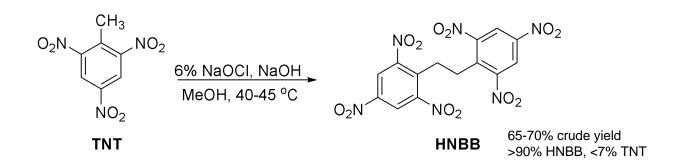

- Shipp process: sub-ambient, requires binary solvent system (THF/MeOH)
 - THF-expensive, toxic, flammable, peroxides
 - Recovery and make-up of THF/MeOH
- Other processes require polar aprotic solvents; i.e., DMSO, DMF, HMPA
 - PAS are expensive and not recoverable in-house
 - PAS are not recoverable externally with explosive residue
- High production cost associated with previous processes
 - Large excess of solvent, base, PAS, and/or metal complex
- Need a 1- or 2-step process with low complexity & cost, and robust purification

HSAAP Development Work

Two Step Process

1. Vary Shipp conditions to maximize HNBB

- No THF, higher temperature, added base


2. Use Gilbert process to convert HNBB to HNS

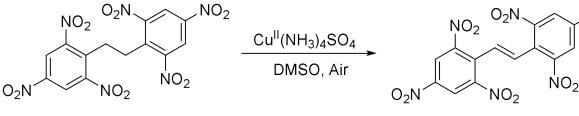
- DMSO, copper amine complex, air

Optimization - HNBB Synthesis

TNT to HNBB Optimization:

- NaOCI:base ratio (pH control)
- Reaction temperature
- Bleach addition rate
- HNBB Drying
 - Methanol wash removes water without need for drying
- Crude vs. Purified HNBB
 - No purification saves time and money

Optimization - HNBB Synthesis


Dicacit / taltion rate otady					
Bleach Addition	Yield	HPLC Area %		Assay Yield	
Rate	Wt. %	HNBB	TNT	%HNBB	
R ₁ (Fastest)	73	96.4	3.7	70.4	
R ₂	69	94.3	4.9	65.1	
R ₃	68	89.1	9.7	60.6	
R ₄ (Slowest)	66	78.6	20.4	47.2	

Bleach Addition Rate Study

• Faster addition affords more HNBB at a higher purity

Optimization - HNS Synthesis

HNBB

HNBB to HNS Optimization:

- Amount of Copper catalyst
- Reaction Time
- Amount of DMSO and number of recycles
 - Optimized to 1 virgin and 3 recycles

 NO_2

HNS

Optimization - HNS Synthesis

Reaction Time (Hours)	DMSO Ratio (mL:HNBB)	Catalyst Ratio (Cat:HNBB)	HNS Yield Wt. % (From TNT)
>20	High	High	28.5
<10	High	High	29.1
<10	Low	High	39.2
<10	Low	Low	41.5

- Reduction in reaction time gives similar yields (lower overall cost)
- Reduction in solvent leads to increase in yield (and lower cost)
- Reduction in catalyst leads to slight increase in yield (and lower cost)

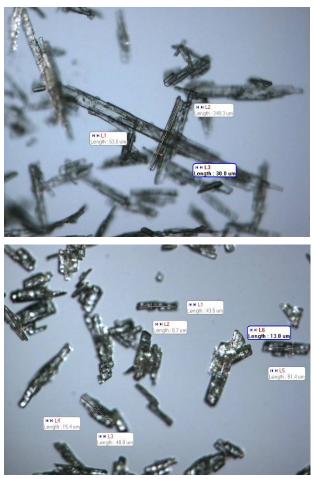
Optimization – HNS Purification

- Crude HNS-I has dark brown color, contains 8-10% HNBB
- Product failed Thermal Stability Testing
- HNS has poor solubility in common solvents
- Recrystallization from PAS/anti-solvent adds significant cost
- Two purification routes developed:
 - HNO₃ Digestion
 - HNO₃ Recrystallization

Optimization – HNS Purification

Conditions	Wt. % HNO ₃	VTS (260°C) mL/g/mLghr	Bulk Density g/mL	Wt.% Recovery
Targeted Parameters	-	<0.6/<0.6	0.8	-
Slow Cool	70	0.7/0.2	0.5	85
Fast Cool	80	0.6/0.1	0.3	91
Fast Cool	90	0.3/0.2	0.4	87
Slow Cool	90	0.6/0.1	0.7	74
10x Scale-up of Above	90	0.2/0.1	0.6	83
21x Scale-up of Above	90	0.2/0.1	0.6	86

HNO₃ Digestion

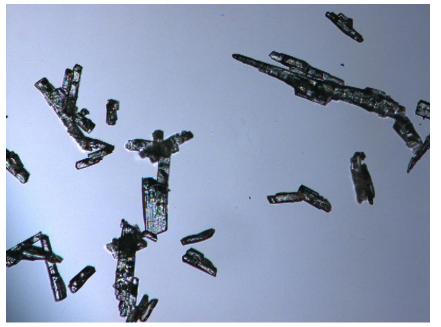

- Higher concentration of nitric acid affords good recovery, reasonable density, and acceptable thermal stability.

HNS Purification – HNO₃ Digestion

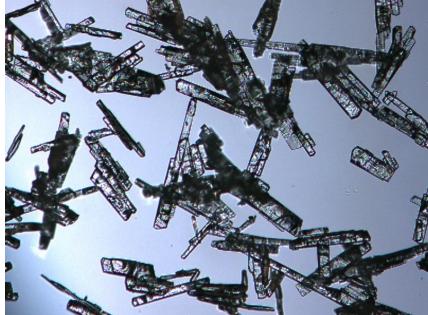
Crude HNS: d=0.25 g/mL

Length: 400 – 800 micron Width: 12 – 20 micron

Fast cool: d=0.4 g/mL



Slow Cool: d=0.7 g/mL


HNS Purification – HNO₃ Digestion

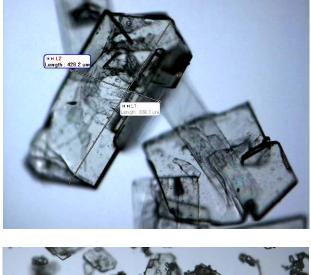
90% HNO₃ Digestion

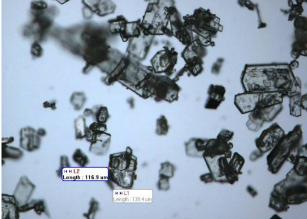
Small Scale: d=0.7 g/ml

Lab Scale-Up: d=0.6 g/ml

VTS: 0.2/0.1

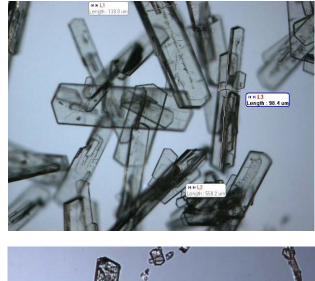
VTS: 0.6/0.1

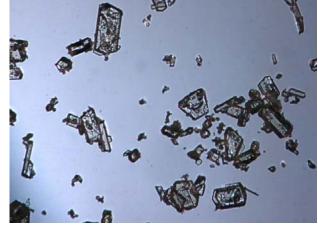

HNS Purification - Recrystallization


90% HNO₃ Recrystallization

Conditions during cooling	VTS ml/g/ml/ghr	Bulk Density g/ml	% Recovery
Targeted Parameters	<0.6/<0.6	>0.8	_
No Stirring	0.7/0.2	0.6	64
Normal Stirring	0.4/0.1	0.6	70
Slow Stirring	0.3/0.1	0.8	68
Slow Cooling and Stirring	0.5/0.4	1.0	68
Scale-up of above to ~1 lb scale	0.6/0.3	0.85	70

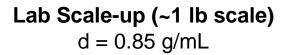
HNS Purification - Recrystallization

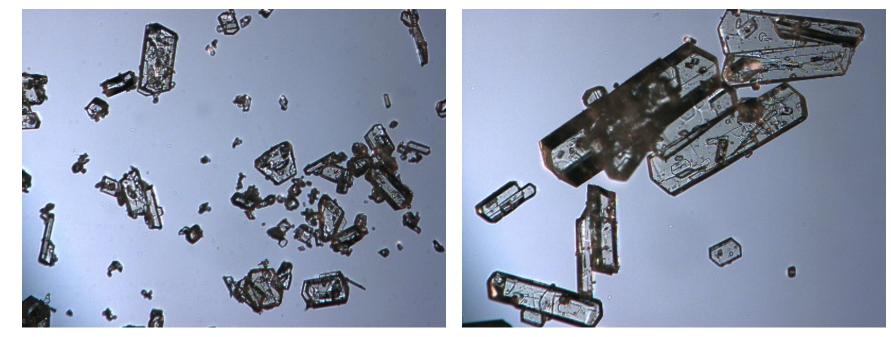

No Stir: d=0.6 g/mL



1/2 Normal Stir: d=0.8 g/mL

Normal Stir: d=0.6 g/mL

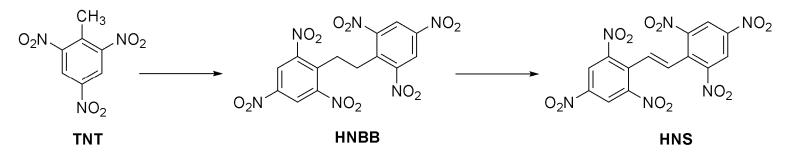




Slow Cool & Stir: d=1.0 g/mL

HNS Purification - Recrystallization

Small Scale d = 1.0g/mL



VTS: 0.5/0.4

VTS: 0.6/0.4

HNS Process Optimization

- HNS Reaction conditions have been optimized
- Two viable HNO₃ purification routes:
 - Digestion:
 - VTS: 0.2/0.1 mL/g/mL/ghr
 - Bulk Density: 0.6 g/mL
 - Recrystallization:
 - VTS: 0.6/0.4 mL/g/mL/ghr
 - Bulk Density: 0.85 g/mL

Conclusions and Future Work

- Viable 2 step process for HNS identified
- Robust purification process identified
- All material processed passes thermal stability test
- Process is highly cost-competitive
- Further optimize weight yield of crude HNS
- Optimize scale-up cooling and agitation rates for maximum densities of purified HNS

Holston Army Ammunition Plant

HNS manufacture at HSAAP by FY 2010

Acknowledgements

HOLSTON 👁

BAE SYSTEMS

S. ARMY MATERIEL COMMAND

Y AMMUNITION PLANT

- Mr. Jim Owens
- Ms. Kelly Guntrum
- Mrs. Lisa Hale
- Mrs. Roberta Tabor
- Mr. Jim Haynes
- Mr. Ed LeClaire