

MINISTÈRE DE LA DÉFENSE

New IM issue on naval platforms: Solid Rocket Motor (SRM) pneumatic explosion risk. Effects prediction methodology

French MoD: N.Duval, E.Faucher, Y.Garcia

2009 Insensitive Munitions and Energetic Materials Technology Symposium Tucson, Arizona May 11-14

DÉLÉGATION GÉNÉRALE POUR L'ARMEMENT

DGA and CAEPE

- DGA = Armament Procurement Agency of the French MoD DGA missions:
 - Preparing the future of defence systems
 - Equipping the armed forces
 - Promoting defence equipment export
- DGA operates its own test centres for "Testing" evaluating materials"

CAEPE is the DGA Propulsion Testing and Missile Safety

centre

- Located near Bordeaux
- 330 people
- 10 ground testing facilities
- 3000 ha
- 2000 tests carried out in 35 years

AL De REUIL

CAEPE: DGA Propulsion Testing and Missile Safety centre

- Our missions:
 - Testing and expertise:
 - Performance of propulsion systems for either strategic or tactical missiles
 - Ageing of propulsion systems
 - Safety assessment for propulsion system, ammunition and complete weapon system
 - Contractors support:
 - Assembling of propulsive stages for the French ballistic missiles
- Safety assessment:
 - Safety testing areas: all IM tests
 - Expertise division: simulations, technical support, IM tests interpretation

Introduction: Solid Rocket Motor explosion, The new risk of naval safety studies

- IM munitions suppress mass detonation risk
- Naval hazard analysis highlight a new risk considering the high density of ammunition on board:
 - **Solid Rocket Motor explosion risk**
- Consequences of the risk: catastrophic (death of personnel, loss of the ship if sympathetic reactions)
- Different causes of explosion:
 - at ignition
 - during firing
 - due to accidental or combat threats
- Accurate assessment of explosion consequences necessary to:
 - Mitigate the risk
 - Meet system requirements

Introduction: Solid Rocket Motor explosion, The new risk of naval safety studies

- Specific configuration: SRM explosion in Vertical Launch System: SRM ignition in the ship → explosion in the VLS magazine
- Two main issues:
 - Sympathetic reaction?
 - Ammunition reaction scenario
 - Ship integrity threatened?
 - Thermal and pressure loadings

- Development of a new methodology based on simulations to deal with this ship confined configuration.
- Explosion effects divided and studied in 3 steps:
 - Fragments projection
 - II. Blast overpressure
 - III. Fire due to scattering of burning propellant fragments

I. Fragment projections

Study of fragment impacts on adjacent munitions and risk of initiation associated

Fragmentation computed thanks to CRONOS (in-house analytical code)

CRONOS: designed to delimit hazard areas generated by SRM explosion. Calculates:

Fragment size distribution
Initial velocities
Flight trajectories

Probabilities of hitting or killing
Heat fluxes

Air blast overpressure

5 hazard areas

 CRONOS used in our study to determine fragment size distribution and evaluate initial velocities

I. Fragment projections

- CRONOS fragmentation: input of Ls-Dyna code study to predict initiation risk
- Fragment impacts directly adjacent missile

Conclusion on initiation: casing perforation or energy criteria

II. Blast overpressure effect Effect on donor canister

Study of blast effect on donor canister resistance

- Blast overpressure propagation simulated by CFD code Fluent
- Explosion modeled by a shock tube phenomenon: a pressurised hot gas volume released in its environment
- 3D model computes pressure loadings on the internal canister surface:
 - P0 = P_{structure failure}
 - V0 = V_{free}
 - Gas production amplified by the sudden enlargement of the combustion surface. This gas production is injected in the initial hot gas volume
- Conclusion on canister resistance:
 Comparison with canister failure value

Pressure (bar)

II. Blast overpressure effect Effect on VLS magazine and adjacent munitions

Study of the non-stationary pressure loadings on bulkheads and on adjacent canisters and determination of canister resistance

- 3D model of the magazine operated to model the pressure wave propagation
- Shock tube phenomenon:
 - Canister break-up effects are neglected
- Simulation computes time-dependent blast overpressure in every point in the magazine
- Important influence of the donor missile site in the magazine
- Conclusion:
 - Blast overpressure time-dependent mappings on bulkhead and adjacent canisters
 - Adjacent canister resistance:
 Comparison with canister failure value or Ls-Dyna simulation

IMEMTS

III. Fire due to scattering of burning propellant fragments

Study of quasi-static pressure evolution and heat flux from propellant fire to canister and magazine bulkhead

- 3D model runs with Fluent, taking into consideration venting systems.
- Choice of Fluent: possibility to compute heat radiation and to take into account sonic outflow by venting systems.
- Choice of 3D model: necessity to identify local maxima of heat transfer (important for adjacent munitions initiation risk)
- Gas flow rate during fire determined thanks to CRONOS fragmentation combustion surface and pressure-dependent combustion velocity.
- Geometry considered:
 - Fire area limited next to the exploded missile: overvalue of pressure and heat flux→ safety at stake
 - Simplified geometry to limit calculation time: gas do not flow between canister, exchange volume and surface reduced→ conservative

III. Fire due to scattering of burning propellant fragments

- Results: Quasi-static pressure quickly uniform in the magazine
- Quasi-static pressure evolution:
- Result shows efficiency of venting device

Heat flux mapping on bulkhead (shows 3D aspect of thermal

phenomenon):

- Conclusion:
 - Quasi-static pressure evolution: adequation of venting device implemented
 - Heat fluxes to determine bulkhead and adjacent missile temperature evolution

DGA/DE/CAEPE/EXP

IV. Adjacent missiles reaction risk evaluation

Study of adjacent missiles temperature evolution and reaction risk associated

- 1D model is used:
 - Conduction in canister
 - Radiation between canister and missile
 - Convection between air in canister and missile and canister walls
 - Conduction in different missile materials
- Inputs of 1D model: heat fluxes computed thanks to the 3D fire model
- Reaction missile criterion: reaching fast cook-of ignition temperature in the propellant.

Slide N°16 / 20

IV. Adjacent missiles reaction risk evaluation

- Outputs: adjacent missile ignition delay. Real difference between immediately adjacent munitions and others.
- To state on sympathetic reaction risk: comparison between ignition delay and fire fighting device initiation delay, taking into account its efficiency.
- If adjacent munitions reaction acknowledge, FCO SRM response: new missile reaction.
- Conclusion: construction of the whole reaction missile scenario.

Conclusion

- Methodology explores the large range of SRM explosion effects.
- Tackles the 3 types of threats associated to SRM explosion:
 - Mechanical threats:
 - Fragment projection
 - Blast overpressure
 - Thermal threats:
 - Fragment burning
- Use of CFD code: relevant choice for this confined magazine configuration. Good approach of blast wave with reflection phenomenon and thermal effects with local maxima identification
- Study outputs various:
 - To assess reaction risk of adjacent munitions. Whole reaction scenario in VLS magazine consequently to SRM donor explosion can be drawn up
 - To assess VLS magazine and ship integrity. The on-board consequences: object of another study conducted by CTSN (DGA centre)

The methodology provides strong elements to achieve an accurate assessment of the safety level of VLS integrated on board.

Any questions?

DUVAL Nadège DGA/DE/CAEPE/SDT/EXP

Tel: +33 5 56 70 55 93 Fax: +33 5 56 70 57 99

nadege.duval@dga.defense.gouv.fr

GARCIA Yanick (CRONOS) DGA/DE/CAEPE/SDT/EXP Tel: +33 5 56 70 58 02

yanick.garcia@dga.defense.gouv.fr

FAUCHER Eric (Aerothermal study) DGA/DE/CAEPE/SDT/EXP

Tel: +33 5 56 70 61 40

eric-n.faucher@dga.defense.gouv.fr

