

Novel Manufacturing Process Development and Evaluation of the High Blast Explosive PAX-3 with BDNP A/F and R8002 Plasticizers

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

HOLSTON

AMMUNITION PLANT

BAE SYSTEMS OSI, Holston Army Ammunition Plant

K.B. Yim U.S. Army RDECOM-ARDEC, Picatinny Arsenal

Acknowledgments

- ARDEC
 - Patrick Dwyer
 - Stacey Yauch

• BAE SYSTEMS, OSI

- Curtis Teague
- Virgil Fung
- Alberto Carrillo
- Matt Hathaway
- Kelly Guntrum

Enhanced Blast Explosives

- Deliver More Energy on Target than Traditional Explosives
- Types of Enhanced Blast Explosives
 - Metallized Explosives
 - Reactive Surround
 - Fuel Air
 - Thermobaric

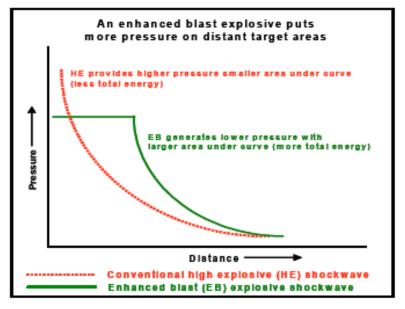


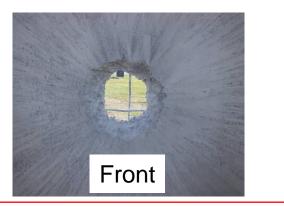
Fig. Comparison of conventional explosives and enhanced explosives.

Enhanced Blast Explosives

- Rely on Blast (Primary) and Heat (Secondary) for their Effects
- Effects Intensified in Confined Spaces (Buildings, Bunkers, Caves, Vehicles, etc.)
- Active Elements are an Explosive and a Fuel (metal)
- Vacuum or Oxygen Depletion Effect is Achieved

PAX-3

- Developed by ARDEC Under the Novel Energetics Science and Technology Objective (STO)
- Evaluation for the M141 Bunker Defeat Munition
- Evaluation for Line of Sight Multi-Purpose (LOS-MP)



PAX-3

- PAX-3
 - HMX
 - Cellulose Acetate Butyrate (CAB)
 - BDNPA/F plasticizer
 - Aluminum
- Replacement for Aluminized Comp. A-3

Concrete wall 10' wide, 10' tall 8" thick, reinforced with double steel rebar

PAX-3 INSENSITIVE MUNITION TESTING

PAX-3 3.2" Generic Shaped Charge IM Test Summary*						
IM Test	# of Tests	Reaction				
Bullet Impact	2	Pass No Reaction				
(50 cal 2800 ft/s)	2	Pass No Reaction				
Army Fragment Impact (Cube 6000 ft/s)	2	Pass Burn				
		Pass Burn				
Slow Cook Off (50 F /hr)	2	Fail Explosion/Deflagration** Fail Explosion/Deflagration**				
Fast Cook Off	2	Pass Burn Pass Burn				

* Initial Assessment

* * This reaction can be potentially mitigated by adequately venting the warhead

PAX-3 SENSITIVITY AND PERFORMANCE TEST DATA						
	PAX-3	AI Comp A3	LX-14			
Impact (cm)(50%)	39.5	80.4	26			
LSGT (50%)	129.5	119+/- 3	199			
Detonation Velocity (m/sec)	8070	8199	8680			

Performance and sensitivity data provided by ARDEC

Data Originally Presented at 2006 IMEM

PAX-3 Current Processing

- HSAAP Slurry Processing
 - Explosive intermediates slurried in water
 - Polymer / Plasticizer dispersed in solvent
 - Coating / processing cycle
 - Recovery / reuse of solvent
- Traditional Method Incompatible with Thermobaric PBX
 - Aluminum powder readily oxidized by water
 - Safety issues significant at production-scale operations
- "Water Replacement" (WR) Fluid Evaluated *
 - Not reactive with metal powders
 - Fluidizing effect of water
 - Colorless, nonflammable liquid
 - Similar boiling point range as water
- Recovery of WR Fluid Key to Controlling Product Cost
- * Previously Reported in 2006 IMEM

PAX-3 Current Processing

- Issues
 - Water Replacement Fluid Expensive
 - Separation of Water Replacement Fluid from Solvent Difficult
 - Supplier Discontinued "WR" Fluid Currently Employed for Manufacture
- New Solution
 - Re-evaluate Traditional Aqueous Slurry Technology to Manufacture PAX-3
 - Known Technology
 - Minor Changes to Processing Technique
 - Significant Cost Savings to the Customer

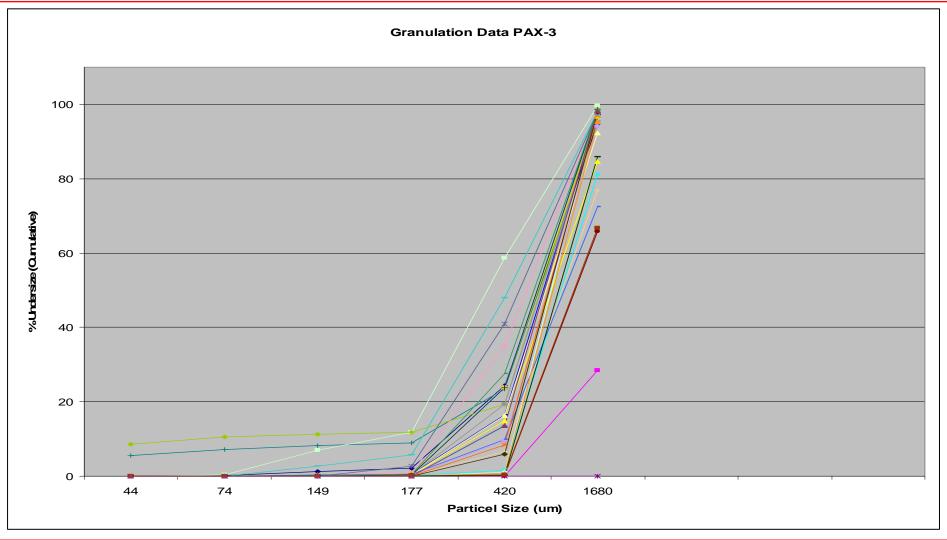
PAX-3 Aqueous Development

- Processing Concerns
 - Hydrogen Gas Generation During Coating Cycle
 - Time / Temperature of Aluminum Exposure in Slurry
 - pH of the Slurry Medium
- Material Evaluation
 - Explore any "Additives" that has the Potential to Impede or Delay Gas Generation

BAE SYSTEMS

PAX-3 Aqueous Process Development

- Lab-Scale Process Development
 - Design of Experiments
 - Baseline Using "WR" Parameters
 - Systematic Evaluation of Process Parameters for PAX-3
 - Time
 - Temperature
 - Agitation
 - Addition Rates
 - Process "Additives"
 - Typical lab batch size of 1,000 grams
 - 2 "Additives" Identified and Employed for Processing
 - Gas Generation Monitored Real Time
 - H2 Scan: HY-Optima 1720 Process Monitor



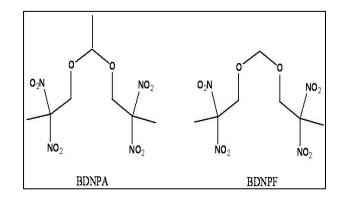
10 L Coating Still

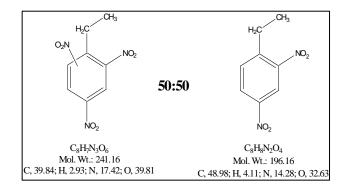
PAX-3 Laboratory Granulation

Process Development Conclusion

- Key Variables
 - Time
 - Resonance Time Coating Process
 - Solvent Concentration
 - Very Tight Tolerance
 - No Growth of Granules

BAE SYSTEMS

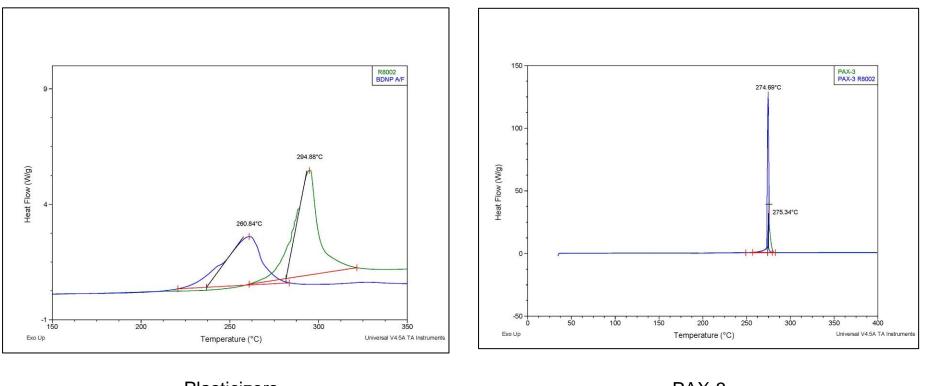

- Excessive, Rapid Growth into Agglomerations-Undesired Product
- Hydrogen Gas
 - Negligible Level Detected at Lab Scale Evaluation
- Production Scale Batch
 - FMEA Completed
 - Industrial Hydrogen Gas Detector Purchased/Commissioned
 - Process Parameters Established Based on Lab Scale Development Efforts
 - 2 x 500 lb Batches Scheduled for Week of April 27th



BAE SYSTEMS

Plasticizers

- BDNP A/F
 - Energetic Plasticizer
 - 50% bis(2,2-dinitropropyl)acetal (BDNPA)
 - 50% bis(2,2-dinitropropyl) formal (BDNPF)
 - Initially Developed in 1950's for Polaris Program
 - First Manufactured by U.S. Navy (Indian Head) and Aerojet in the 1960's
 - Later Manufactured by Thiokol in the 1990's
 - Used Today in Various Formulations
 - LOVA Propellants
 - Navy PBX 106 Formulation
 - IM Explosives (PBXN-106, PAX-2A and PAX-3)
- R8002
 - 50% Dinitroethylbenzene (DNEB)
 - 50% Trinitroethylbenzene (TNEB)
 - Similar to K10 (65:35 DNEB:TNEB)
 - Used Internationally as an Energetic Plasticizer in Experimental Applications


PAX-3 w/ R8002

- Processing
 - Drop in Replacement with Current Aqueous Procedure
 - No Observable Change in Processing Steps
- Observations
 - Binder Lacquer system is less viscous than BDNP A/F
 - Binder Components Readily Mix with Little Mechanical Input
 - PAX-3 Product Using R8002 Generates a Higher Bulk Density Under Same Process Conditions
 - No Compatibility Issues

DSC Analysis

Plasticizers BDNP A/F vs. R8002 Ramp 5°C/min PAX-3 BDNP A/F vs. R8002 Ramp 5°C/min

PAX-3 Analysis

Batch #	<u>PAX-3</u> <u>Plasticizer</u>	<u>DSC</u> Exothermic Peak <u>°C</u>	<u>VTS</u> Evolved Gas g/cc	<u>Press</u> <u>Density</u> g/ml	<u>ERL</u> Impact cm
1069-88C	BDNP A/F	275.34	0.266	1.73	36.14
1069-114	R8002	274.69	0.132	1.80	41.40

Conclusion

- The Aqueous Coating Method Provides Spec. Product
- Method Conforms to HSAAP Infrastructure
 - No Specialized Pumps, Seal, or Handling Equipment as with "WR" Method
- Product to Be Scaled to 500 lb Batch Size for Pilot Production Trial
- The R8002 Plasticizer Showed No Processing or Compatibility Concerns
 - Drop in Replacement for BDNPA/F

IT ALL STARTS HERE!!

