

DEVELOPMENT & OPTIMIZATION OF A PRODUCTION SCALE PROCESS FOR THE MANUFACTURE OF IMX-101 AT HSAAP

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

Virgil Fung *, Curtis Teague, Andrew Wilson BAE SYSTEMS OSI, Holston Army Ammunition Plant

> Crane Robinson *, Paul Vinh RDECOM-ARDEC, Picatinny Arsenal

Briefing Outline

- Background
- Program Objectives
- Manufacturing Process Overview
- IMX-101 Producibility Phase 1
- IMX-101 Producibility Phase 2
- Conclusion

Acknowledgement

- PM-CAS
 - Mr. Charlie Patel
- RDECOM-ARDEC
 - Mr. Brad Zastrow
 - Mr. Scott Faluotico
- BAE SYSTEMS OSI
 - Mr. Brian Alexander
 - Mr. Alberto Carrillo
 - Mr. Jim Owens
 - Ms. Kelly Guntrum
 - Mr. Matt Hathaway
 - Mr. Ed LeClaire
 - Mr. Roger Williams
 - Mr. Brett Lifford
 - Mr. Jeff Dill
 - Ms. Donna Bowyers
 - Process Operators in Building L-4

Background

- IMX-101 Formulation
 - Developed at Holston Army Ammunition Plant (HSAAP) as a replacement of TNT
 - Contains non-traditional ingredients such as DNAN & NTO
 - Ingredients manufactured and/or processed at HSAAP
 - Superior IM performance than TNT in 155mm M795 projectiles
 - Passed all IM Engineering Tests (Bullet Impact, Fragment Impact, Slow Heating, Fast Heating, Sympathetic Reaction & 81mm Shaped Charge Jet Impact)
 - IM test results presented at IMEMTS 2007
 - Down-selected as the prime candidate as TNT replacement filling in 155mm M795 projectiles
 - BAE Systems OSI was contracted to manufacture IMX-101 in full production scale
 - Explosive Qualification
 - Projectile Loading Process Development

Passed SCJI

Passed Bullet Impact

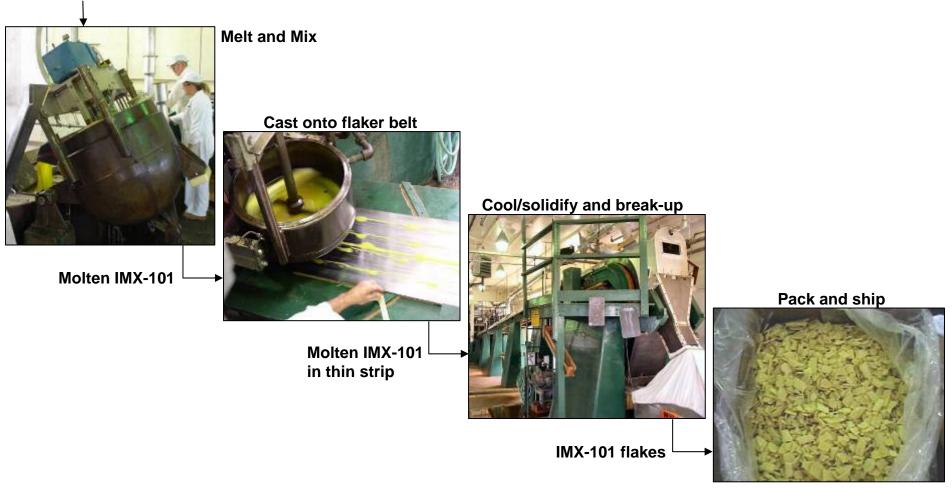
Background (cont)

- IMX-101 successfully Loaded, Assembled & Packed (LAP) at US Army RDECOM ARDEC in the 155mm M795 projectile
- Qualification of IMX-101 explosive near completion
 - Aging trials result pending
- Qualification testing of IMX-101 explosive in M795 projectile also underway
 - Formal IM testing scheduled CY09
- IMX-101 filled M795 projectiles survived gunlaunched ambient, hot & cold at max charge (M198 howitzer, Yuma Proving Ground)
- IMX-101 also being considered for the next generation 105mm M1 cartridge and the 155mm M107 training ammunition

Program Objectives

- OSI and ARDEC to jointly establish a reproducible manufacturing process of IMX-101 at HSAAP under optimum operating conditions
 - Baseline parameters established (un-optimized)
 - Conduct experiments in production facility and compare results
 - Provide supporting information for material specification
 - Generate consistent material for loading trials
 at ARDEC
 - Desire to use Design of Experiment (DOE) approach to optimize processing parameters
 - Manufacture explosives using optimized processing parameters
- Finalize SOP, Material Specification and Manufacturing Instruction for the manufacture of IMX-101

ARDEC Picatinny Arsenal



Holston Army Ammunition Plant

IMX-101 Manufacturing Process Overview

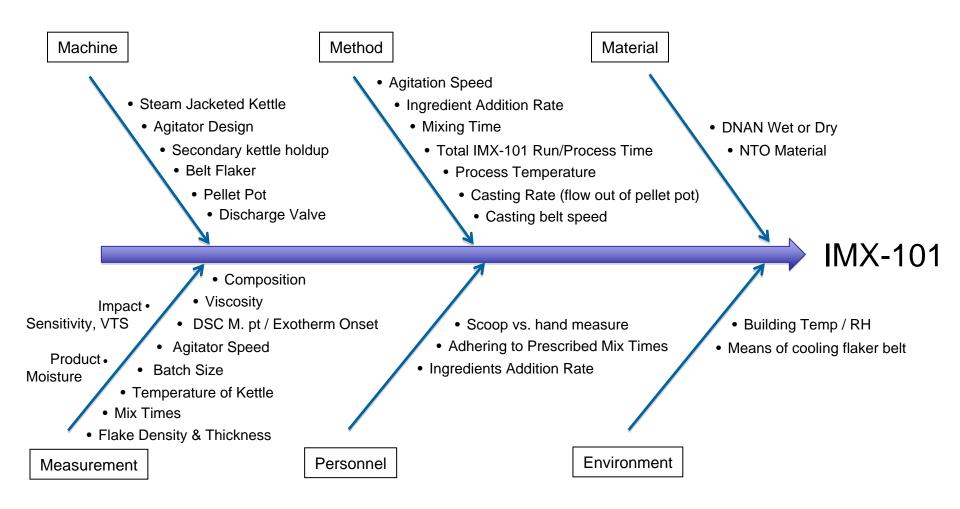
Load Ingredients

Images shown are from the PAX-21 production

IMX-101 Manufacturing Process Overview (video)

Baseline Processing Parameters

- Baseline Processing Parameters identified from 1,200 lb production-scale batches of IMX-101 made in 2006
 - Processing temperatures at various stages
 - Ingredient Feed Rate & Order of Addition
 - Use of dry/wet ingredients
 - Final Incorporation (mixing) Time
 - Agitator Speed
- Material Processibility indicated by Efflux
 Viscosity and consistent Product Homogeneity
 - Composition, sensitivity and other physical/chemical properties testing
- Close interaction with ARDEC EM and LAP
 Producibility Teams
 - Immediate feedback on LAP



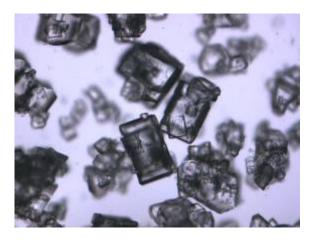
IMX-101 Producibility Parameters Considered

IMX-101 Producibility – Phase 1

- Leverage lessons learned from previous melt-pour and IM explosive development activities (e.g. PAX-21, PAX-41, PAX-196, etc)
 - All products utilized same production equipment
- Established nominal composition and tolerances based on user feedback on earlier production-scale batches
 - Attempted to optimize
 - ingredient addition rate
 - final incorporation time
 - agitator speed
 - intermediate holding vessel retention time

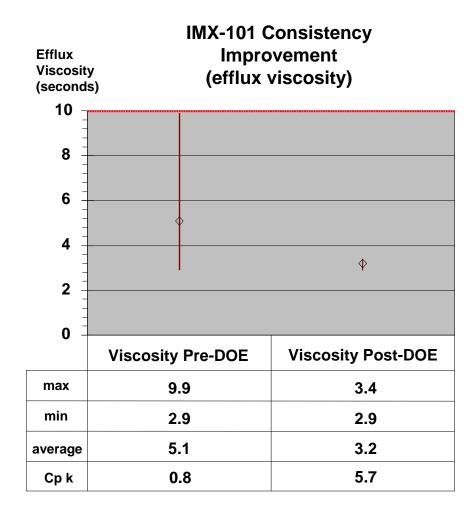
IMX-101 Producibility – Phase 1

- Desire by the customer (PM-CAS) to manufacture using set operating conditions to establish process parameters for LAP of the M795 projectile
 - Utilize nominal formulation and consistent IMX-101 production parameters to manufacture multiple batches
 - 24 batches delivered to the customer for LAP process development operations



IMX-101 Producibility – Phase 1 Result

- Discovered variation of ingredients (particle size / shape) going into IMX-101 explosive led to independent evaluation
 - Extensive laboratory support for analysis and process optimization (e.g. NTO)
 - Obtained better understanding of product



IMX-101 Producibility – Phase 1 Result

- Product appeared to be consistent, as measured by efflux viscosity, and other draft specification requirements
 - Occasionally, end user experienced difficulties in LAP operation even with what was believed to be consistent material
 - LAP producibility DOE was also conducted
 - There are likely other parameters that affect the quality of the M795 cast (porosity, cracking, etc)
 - It is recommended to conduct Phase 2 of the IMX-101 Producibility Study

IMX-101 Producibility – Phase 2 Follow-on Work

- Utilize Six Sigma Tools as a follow on to the LAP DOE and Conduct Explosive Producibility DOE to improve overall product
 - Work concurrently with ARDEC LAP Producibility Team to provide consistent explosive for LAP operation with no defects
- Investigate formulation ingredients (high/low)
 - Evaluate existing tolerance
- Optimize Processing Parameters
 - Final incorporation time
 - Ingredient addition rate
 - Agitator Speed / Design

Conclusion

- Over 20,000 lbs of IMX-101 have been manufactured
 - Still relatively "young" explosive, compared to Comp B, RDX, HMX & TNT
- Successful LAP and Gun Launch
- Explosive Qualification Nearing Completion
- Producibility of Explosive Demonstrated
- Qualification Testing in the M795 Underway
- Efforts underway for Large Scale Production Volumes in CY10