

DEVELOPMENT OF INSENSITIVE ALUMINIZED MELT-POUR EXPLOSIVE FORMULATION

NDIA Insensitive Munitions & Energetic Materials Technology Symposium 2009

Virgil Fung *, Brian Alexander BAE SYSTEMS OSI, Holston Army Ammunition Plant

> Wendy Balas RDECOM-ARDEC, Picatinny Arsenal

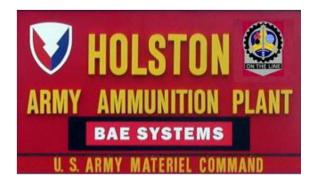
Briefing Objectives

- Background
- Program Objectives
- Technical Approach
- Formulation Candidates
- Test Results
- Additional Information
- Summary

Acknowledgement

- RDECOM-ARDEC
 - Ms. Wendy Balas

- BAE SYSTEMS OSI
 - Mr. Curtis Teague
 - Ms. Denise Painter
 - Mr. Matt Hathaway
 - Mr. Alberto Carrillo
 - Ms. Kelly Guntrum


Background

- PAX-28 Formulation Replacement Program
 - Develop new explosive formulation with similar performance and handling characteristic and IM properties to PAX-28
 - PAX-28 Formulation
 - 2,4-Dinitroanisole (DNAN)
 - Aluminum powder
 - RDX
 - Ammonium Perchlorate (AP)
 - PAX-28 is developed as an IM replacement for TNT/Comp B, and is targeted for high blast applications
 - New formulation candidates must be **<u>without</u>** Ammonium Perchlorate (AP)
 - Health Issues (exposure to handlers)
 - Manufacturing Friendliness (moisture control)
 - Environmental Issues (waste treatment)

Program Objectives

- Developed new formulation candidates to meet customer's requirement
- Conduct lab scale experiment to generate sample for analysis
 - Processibility
 - Hazard Properties
 - Physical / Chemical Properties
- Conduct intermediate scale manufacturing for large scale testing
 - Shock sensitivity HSAAP
 - Performance (plate dent) HSAAP
 - Large Scale Blast Performance (GD-OTS)
- Successful candidate may lead to further optimization and ultimately full production scale manufacturing for further evaluation

Technical Approach (1)

- 1. Performance Prediction Modeling
 - Cheetah performance prediction model used initially to assess candidates with various ingredient combinations:
 - Theoretical Maximum Density (TMD)
 - Detonation Velocity and Pressure
 - Energy Release (kJ/cc explosive)
 - The performance model prediction is only used as a guide to assist selection
 - Aluminized formulations did not behave the same way as conventional explosive in Cheetah prediction

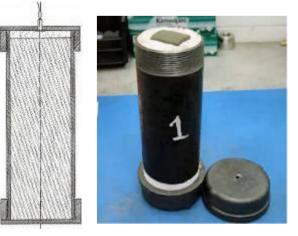
	4044
Official Ly relative shall Because Research Interface Descent Descents Robert Descence Descent Operation Robert Descence Descent Operation Robert Descence Operation Robert Descence Operation Robert Descence Operation	

ment imme titte oge 2 februari. MI I	
Barrier chang to be for former the Mill Con-	
March 199 (199 (199 (199 (199 (199 (199 (199	
max max <thmax< th=""> <thmax< th=""> <thmax< th=""></thmax<></thmax<></thmax<>	
many is and per datas in a seat per a management	a
De (-) - constraint - (2, 3) (3), Max - constraint - (2, 3) (3), Max - constraint - (2, 4) (3),	undarsha selative to WVG
	1101 IU IU IU
	Reaman (0.000 12 (0.012) 30)
In taking a material state	formation and a second of the

Technical Approach (2)

- 2. Small Scale Manufacturing
 - Candidates are manufactured through a series of mixing trial with various ingredient combinations
 - Processibility will be assessed
 - Efflux Viscosity
 - Sedimentation
 - Physical appearance
 - Thermal and hazard testing
 - DSC / VTS / Impact & Friction Sensitivity

Technical Approach (3)


- 3. Small Scale Performance Testing
 - To evaluate the blast performance of the candidate, the Plate Dent Test is carried out
 - PAX-28 used as the baseline
 - 1" thick × 5" square low carbon steel witness plate
 - Candidates loaded in LSGT tube (no card gap used)
 - One Pentolite Booster pellet per shot
 - Damage on plate (dent) measured and compared to baseline
 - Duplicate charges fired for each candidate
- 4. Large Scale Gap Test (NOL)
 - To evaluate the shock sensitivity of leading candidates and compare with PAX-28
 - 50% Card Gap for PAX-28 ~ 131 cards (MSIAC Newgates v1.6)

Technical Approach (4)

- 5. Large Scale Blast Testing
 - To evaluate the large scale blast performance of the candidate
 - Test vehicle & method described in the technical paper "Comparison of Blast Performance of the IM Explosive PAX-28 Variations", presented at IMEMTS 2007
 - PAX-28 used as the baseline
 - Duplicate charges fired for leading candidate
 - Intermediate scale manufacturing (50 LBS) to supply material for the large scale blast test
 - Further formulation optimization based on the result of the large scale blast test

Photos courtesy of GD-OTS

Candidate Formulations

- 2 candidate formulations were developed for assessment
 - OSX-11
 - DNAN + NTO + Aluminum powder
 - OSX-12
 - DNAN + NTO + RDX + Aluminum powder
- Nitrotriazolone (NTO) used in general to replace AP
- Aluminum powder remains as per PAX-28 to create the blast effect
- Proof of concept no formulation optimization in this phase

Candidate Formulations

	OSX-11	OSX-12
Ingredients	DNAN, NTO (two grades) and Aluminum Powder	DNAN, NTO, RDX and Aluminum Powder
Efflux Viscosity at 96°C	~ 10 seconds	~ 5 seconds
Impact Insensitive – Naval Impact	0/10 fire at 220cm	2/6 fire at 220cm, no fire at 200cm
VTS (100°C/48 hours)	N/A	0.06 ml/g
DSC Onset	233°C	255°C
Predicted P _{cj} = % of PAX-28 (Cheetah 5)	95.7%	93.0%
Predicted VOD = % of PAX-28 (Cheetah 5)	96.7%	99.4%
Predicted Energy Release = % of PAX-28 (Cheetah 5)	96.9%	86.0%

Plate Dent Test Result

- 1. OSX-11
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully

OSX-11 Charge 1 NEQ = 262.44g Dent Depth ~ 0.68" OSX-11 Charge 2 NEQ = 262.93g Dent Depth ~ 0.63"

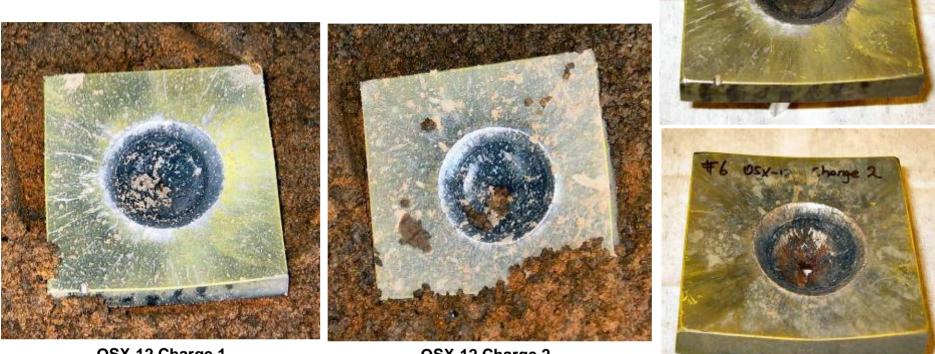


Plate Dent Test Result

- 2. OSX-12
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully

OSX-12 Charge 1 NEQ = 264.60g Dent Depth ~ 0.83" OSX-12 Charge 2 NEQ = 264.37g Dent Depth ~ 0.87"

Plate Dent Test Result

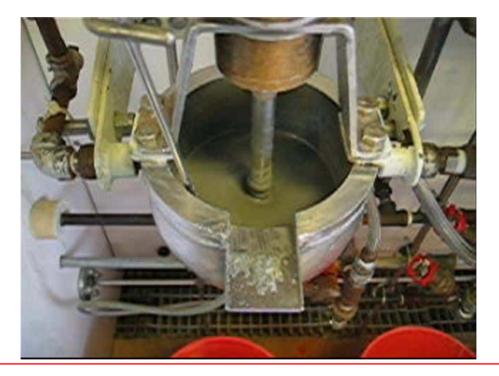
- 3. PAX-28 as baseline
 - Both charges initiated successfully
 - Dent did not penetrate witness plates fully
 - Dent Depth very similar to OSX-12

PAX-28 Charge 1 NEQ = 254.76g Dent Depth ~ 0.89" PAX-28 Charge 2 NEQ = 255.17g Dent Depth ~ 0.86"

Plate Dent Test Summary

- The dent depth of OSX-12 (0.83" & 0.87") and PAX-28 (0.89" & 0.86") were almost identical, suggesting their metal accelerating abilities can be considered as comparable
- Based on the dent depth, OSX-12 (0.83" & 0.87") appears to be more powerful than OSX-11 (0.68" & 0.63), although the performance model predicted otherwise (P_{cj} and energy release)
- At this point, all effort was focused on OSX-12 in the next phase of evaluation

Large Scale Gap Test & Large Scale Blast Test


- NOL LSGT conducted on OSX-12
- Charge Density ~ 1.81-1.82 g/cc
- 50% card gap of OSX-12 = 131 cards (46.6 kbar)
- Shock sensitivity identical to PAX-28
- 30 lbs of OSX-12 manufactured and delivered to GD-OTS for large scale blast test
 - Compare blast performance with PAX-28
 - Test date yet to be determined
 - Test result will determine whether the OSX-12 formulation requires to be optimized
 - More solids can be added due to low viscosity

Additional Information (1)

- OSX-12 possesses good processibility
 - Low efflux viscosity (more solids can be added if necessary)
 - Significantly lower than PAX-28
 - Little sign of sedimentation even distribution of solids in liquid

Additional Information (2)

- OSX-12 has been evaluated in a 60mm mortar fragmentation test
 - Cast iron mortar body
 - PBXN-5 booster
 - Mortar fully detonated
 - Fragment pattern acceptable
 - Base witness plate
 - Side witness plates (1' and 2' away)
 - Fragment size desirable

Additional Information (3)

- OSX-12 has undergone hazard testing in accordance to TB 700 for the application of EX Number
 - Thermal Stability (mass loss at 75°C over 48 hours)
 - 0.03% mass loss
 - Did not exhibit ignition or explosion or thermal runaway
 - Impact Sensitivity (BOE Impact)
 - Not sensitive to impact at drop height of 10.5cm, drop weight of 8lb (12 tests)
 - Small Scale Burn Test
 - Showed no detonation but burned intensely for 2 minutes 54 seconds
 - Friction Sensitivity
 - not sensitive to friction when tested up to 14,065 psi of pressure
 - Above test results shall lead to successful EX number application

Summary

- OSI has taken the approach of replacing Ammonium Perchlorate (AP) in PAX-28 with Nitrotriazolone (NTO)
- NTO is readily available at HSAAP and is a key ingredient in many new insensitive melt-pour formulations such as IMX-101 and IMX-104
- Comparative dent depth between OSX-12 and PAX-28 suggests OSX-12 has matched PAX-28 in terms of metal accelerating ability
- IM properties of OSX-12 assumed to be similar to PAX-28, based on identical LSGT result
- DOT EX Number test results and VTS results suggest OSX-12 possesses excellent IM properties
- Preliminary fragmentation test suggests OSX-12 can produce adequate fragmentation performance in certain configuration
- Good processibility (low viscosity) suggests OSX-12 can easily be scaled up to full scale production
- Large scale blast test result against PAX-28 will indicate whether OSX-12 (in its current form) is an adequate replacement