

IM Solutions For Projectiles Crimped to Cartridges for Artillery Application - Phase II, Transition from Cartridge Case Venting to Insensitive Propellant

Carl J. Campagnuolo, Christine M. Michienzi, Edward G. Tersine, Christine D. Knott, William J. Andrews

NDIA IM/EM Symposium May 11-14, 2009

Approved for public release

Background

- The PGU 44/B cartridge for the AC 130 aircraft consists of a cartridge case and a projectile that are crimped together
- Both components are IM sensitive

Munition	Platform	Propellant	Explosive	FCO	SCO	BI	FI	SD	SCJ
PGU 44/B	105-mm	M1	CompB	I	I	l.	I	I	l.
	Howitzer								

- Separate effort to replace HE (Comp $B \rightarrow PBXN-109$)
- This effort only for propelling charge (M67) and propellant (M1)
 - Vent holes were placed in the cartridge case
 - at the base
 - on the forward end
 - Insensitive propellant

Venting Effort

Venting Holes for SCO & FCO

(Past work – Phase I; Type V reactions)

Cartridge Case with 30 3/8" diameter holes on forward end

Cartridge case with 6 ³⁄₄" diameter holes at base

SCO Test Results - Type V

Cartridge case with holes at forward end

Cartridge case with holes at base

FCO with Vent Holes – Type V

Cartridge case with holes at forward end, parts were found near the pit

Cartridge case with holes at base seen on the pit table, after the bonfire test

IM Explosive – PBXN-109

After firing – cartridge case urethane plastic plugs

Comparison of lethality on concrete target

Fuze Cap and Cartridge Case Venting Plugs

- E = Eutectic of bismuth, lead, copper and tin
 - starts to melt at 200° F; fully melted at 240° F
- F = Formion
 - becomes soft at ~ 250° F and started to melt when T > 300° F
- K = Polyamide Polymer
 - starts to melt at 160° F; fully melted at 200° F.
 - improved plug later developed starts to melt at 200° F; fully melted at 250° F
- Formion fuze cap
 - starts to melt at ~275° F then wax (the explosive stimulant) begins to exit through the nose cap.

Fuze cap, E, F and K Plugs

SCO, with PBXN-109 Inert Propelling Charge with Plugs

Charred remains of container

Formion plugs consumed

Type V reaction; event took place at 425°F

FCO of Cartridge with M67 Propelling Charge, Inert Explosive, Plugs – E, F and K

Test Items – Post Test

Base with E plugs

Type IV reaction

Formion plugs – carbonized instead of melting

Projectile with nose plug consumed

Projectile ejected 20 ft outside pit

Propellant Effort

Propellant

- Leverage propellant development programs for Navy's 5-inch and 155-mm gun systems
- NILE propellant
 - Improved IM over Navy's single base BS-NACO propellant
 - Similar properties to M1 used in 105-mm M67 round

Propellant	Impetus (J/g)	Covolume (cm³/kg)	Gamma	Flame Temp (K)
M1	942	0.1076	1.271	2537
NILE	895	0.1190	1.279	2175

IM Testing of NILE Propellant

Slow cook-off – Type V reaction – pass!!

Fragment Impact – Type IV reaction

Interior Ballistics Model

- Developed using IBHVG2 (lumped parameter 0-D code)
- Validated with data for current M1 propellant
 - Minor time offset is due to the lack of primer ignition delay in the IB model
 - Velocity 490 m/sec (model), 492 m/sec (LAT data)

 IB model use to determine NILE grain geometry that would match M1 ballistic performance

Interior Ballistics Model

- Burning rates of NILE compared to M1
 - Lower burning rate, ok smaller grains usually = better IM

Interior Ballistics Model

• Grain geometry of NILE determined

Grain	Perf #	Length (in)	Outer Diam (in)	Perf Diam (in)	Web (in)	ρ (g/cm ³)	Recommened Charge Weight(lb _m)
Optimized	1	0.055	0.06	0.029	0.016	1.616	3.17
Actual	1	0.058	0.062	0.025	0.019	1.588	3.22

- Actual grains manufactured slightly different size not unusual
 - Swelling during extrusion
 - Contraction during drying

Test Configuration

- Dugway Proving Ground 105mm M102 Howitzer
- Data collection
 - Projectile muzzle velocity (dual Weibel radar)
 - Maximum breech pressure (M-11 copper crusher gauges)
- Spotter rounds fired first
 - Warm gun
 - Calibrate data collection systems
- Reduced charge NILE rounds
- Full charge NILE rounds

Test Configuration

Test Configuration

Test Matrix										
		Ger	Propell	Data Collection						
Test #	Test Date	Propelling Charge Designation	QE (mil)	Projectile Type	Fuze Type	Propellant Type	CW (lbm)	Cond Temp (°F)	Weibel Radar Track	M-11 Gages
1	9/11	Spotter-1	10	105H	M564	M1	2.82	AMB	Y	0
2	9/11	Spotter-2	20	105H	M564	M1	2.82	AMB	Y	0
3	9/11	Spotter-3	25	105H	M557	M1	2.82	AMB	Y	0
4	9/11	Spotter-4	25	105H	M557	M1	2.82	AMB	Y	0
5	9/11	M67-1	25	105H	M557	M1	2.82	AMB	Y	2
6	9/11	NILE2	25	105H	M557	NILE	2.27	AMB	Y	2
7	10/30	Spotter-5	27.5	105H	M564	M1	2.82	AMB	Y	0
8	10/30	Spotter-6	27.5	105H	M564	M1	2.82	AMB	Y	0
9	10/30	M67-2	27.5	105H	M564	NILE	2.82	AMB	Y	3
10	10/30	NILE3	27.5	105H	FMU153	NILE	2.75	AMB	Y	3
11	10/30	NILE1	27.5	105H	FMU153	NILE	3.24	AMB	Y	3
12	10/30	M67-3	35	105H	M564	M1	2.82	AMB	Y	3
13	10/30	NILE4	35	105H	M564	NILE	3.39	AMB	Y	3
14	10/30	NILE5	35	105H	M564	NILE	3.49	AMB	Y	3
15	10/30	NILE6	250	105H	FMU153	NILE	3.54	AMB	Y	3
16	10/30	NILE7	250	105H	FMU153	NILE	3.49	AMB	Y	3

Test Data

Test Predictions and Performance Results										
	Gei	neral		Pre	dicted	Actual				
Test Number	Test Date	Propelling Charge Designation	CW (kg)	Muzzle Velocity (m/s)	Max. Breech Pressure (psi)	MV _{avg} (m/s)	Avg. Max. Breech Pressure (psi)			
1	9/11/2008	Spotter-1	1.281	448	35089	489	ND			
2	9/11/2008	Spotter-2	1.281	448	35089	486	ND			
3	9/11/2008	Spotter-3	1.281	448	35089	489	ND			
4	9/11/2008	Spotter-4	1.281	448	35089	490	ND			
5	9/11/2008	M67-0	1.281	448	35089	492	36750			
6	9/11/2008	NILE1	1.029	338	14876	340	15000			
**	**	**	**	**	**	**	**			
7	10/30/2008	Spotter-5	1.281	448	35089	492	ND			
8	10/30/2008	Spotter-6	1.281	448	35089	489	ND			
9	10/30/2008	M67-1	1.281	448	35089	489	37100			
10	10/30/2008	NILE3	1.250	404	21569	388	21025			
11	10/30/2008	NILE1	1.470	465	30424	445	28700			
12	10/30/2008	M67-2	1.281	448	35089	489	35250			
13	10/30/2008	NILE4	1.538	483	33747	474	33850			
14	10/30/2008	NILE5	1.583	495	36131	480	35125			
15	10/30/2008	NILE6	1.606	501	37413	497	45300			
16	10/30/2008	NILE7	1.583	495	36131	488	42100			

** Testing was interrupted after test shot number 6 due to gun carriage structural failure. ND: No Data

Test Data

- Good agreement with IB model predictions
- High pressures due to non-ideal ignition pressure waves
 - especially at higher pressures, but no corresponding increase in projectile velocity
 - Used standard igniter not optimized for NILE
 - Anticipated will be addressed in further study

Conclusions and Future Work

- F plugs have been excluded; future designs will have E or K plugs
- First test of NILE in 105-mm howitzer was a success
- Further optimization of the propellant (granulation) necessary
- Optimization of primer necessary
 - Primer propellant less sensitive than black powder
 - Increase tube length eliminate non-optimal ignition/pressure waves
- IM testing of propelling charge to demonstrate improvement