

An Improved Process for the Synthesis of TATB from TETNB

2009 Insensitive Munitions and Energetic Materials Technology Symposium, Tucson, AZ

Alexander J Paraskos R&D Synthesis Chemist ATK Launch Systems Phone: 435-863-2392

alex.paraskos@atk.com

May 13, 2009

TATB is an important IM explosive material

- TATB is a key component in several important explosive formulations
 - PBXN-7, PBXW-14, PBX-9502, PBX-9503, LX-17
- TATB exhibits excellent balance of performance, thermal resistance and insensitivity to stimuli:

Compound	Sensitivity (Impact)	Deflagration Point	Density	Detonation Velocity
NTO	1200 N m	270 °C	1.91 g/cm ³	7860 m/s
TATB	50 N m	384 °C	1.93 g/cm ³	7350 m/s
TNT	15 N m	300 °C	1.65 g/cm ³	6900 m/s
RDX	7-8 N m	204 °C (mp)	1.82 g/cm ³	8750 m/s
CL-20	4 N m	195 °C (mp)	2.04 g/cm ³	> 9000 m/s

^{*} Rudolf Meyer et al, Explosives (5th edition), 2002, Wiley-VCH Publishers, Weinheim

Legacy "Benziger" Process for TATB Production

CI HNO₃ Oleum 150°C, 2.5 h TCTNB
$$O_2N$$
 O_2N O_2N

- Starting material = Trichlorobenzene (TCB)
 - TATB from TCB produces environmentally undesirable waste stream
 - TCB is toxic; TCB synthesis from chlorination of benzene
 - PRC (China) is sole source of this material; future supply uncertain and the cost of TATB production may ultimately be affected
 - Currently no qualified supplier of legacy TATB available
 - Bridgewater, Royal Ordinance, McGregor have ceased production

ATK Navy ManTech TATB Process

- Navy-funded ManTech process developed at ATK LS between 2003-2007
- Starting material = phloroglucinol (PG)
- Phloroglucinol is a biosynthetically accessible material
- Triethylorthoformate is typically used for alkylation step (form TETNB)
- Main product impurities: ammonium diaminopicrate salt (ADAP) and ethoxydiaminotrinitrobenzene (EDATB; product of incomplete ammonolysis)
- Problem: PBXN-7 formulation using ATK ManTech TATB did not perform in all necessary configurations

Reaction Impurity Formation Mechanism

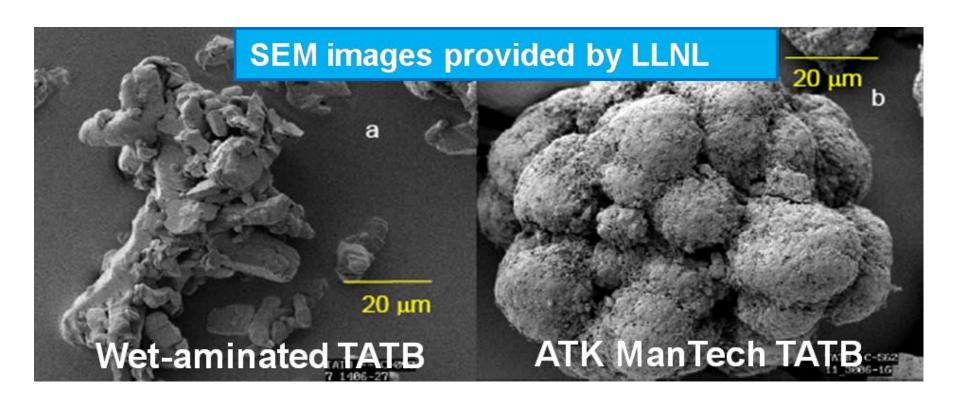
A premier aerospace and defense company

- Data has shown ADAP to have a minimal effect on TATB sensitivity (safety) and small effect on thermal stability
- Elevated temperature and NH₃ pressure were reported to convert ADAP to TATB (Bellamy)

ADAP Safety Data

DSC onset/peak (°C)	303.5/306.1		
HPLC purity	99.4 %		
ABL impact	51 centimeters		
ABL friction	800 lbs @ 8 feet per		
	second		

Navy: TATB & PBXN7 Performance Differences


	Legacy	ATK ManTech	
1st (2nd) DSC Onsets	378	353 (368)	
Purity (HPLC)	99+%	97-98%	
Mean Size	48	56	
Bulk Density (TMD = 1.937)	1.92	1.84	
PBXN-7 Density Pressed (%TMD)	99.3-99.9	94.9	
FMU-152 @ Low Temp (PBXN-7)	5/5 Go's	3/5 Go's	
Large Scale Gap Test (PBXN-7)	207 cards	173.5 cards	

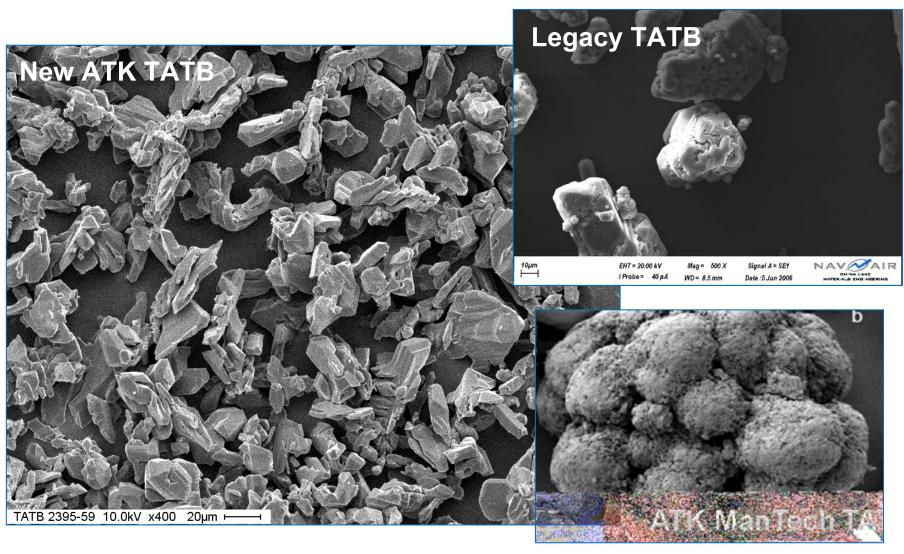
- Formulations using ManTech ATK TATB did not demonstrate acceptable performance in FMU-152 fuses at low temperature
- Purity of ATK ManTech TATB significantly lower than legacy
- Densities, pressed densities and thermal onsets lower than legacy material

TATB Particle Morphology Variation

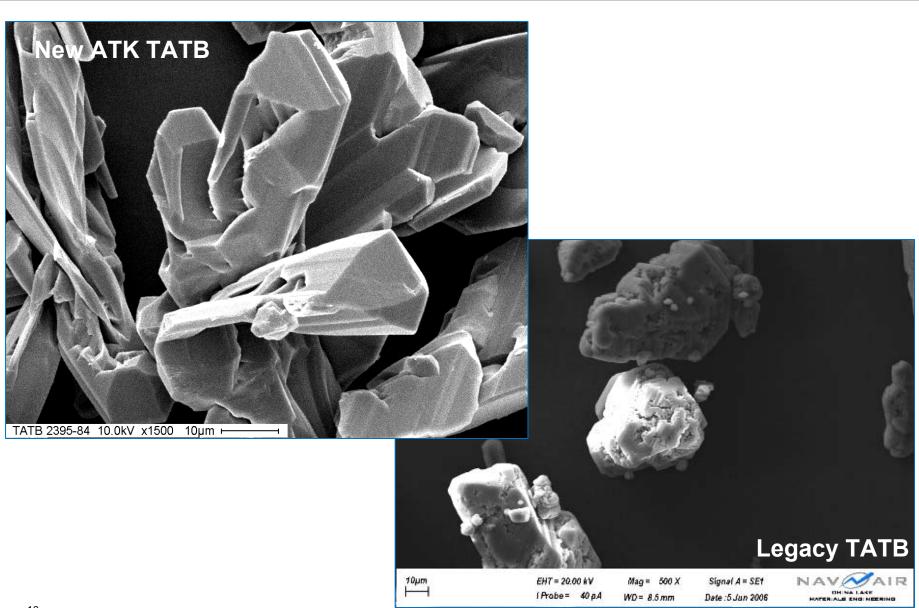
A premier aerospace and defense company

TATB particle morphology was used as a key screening tool

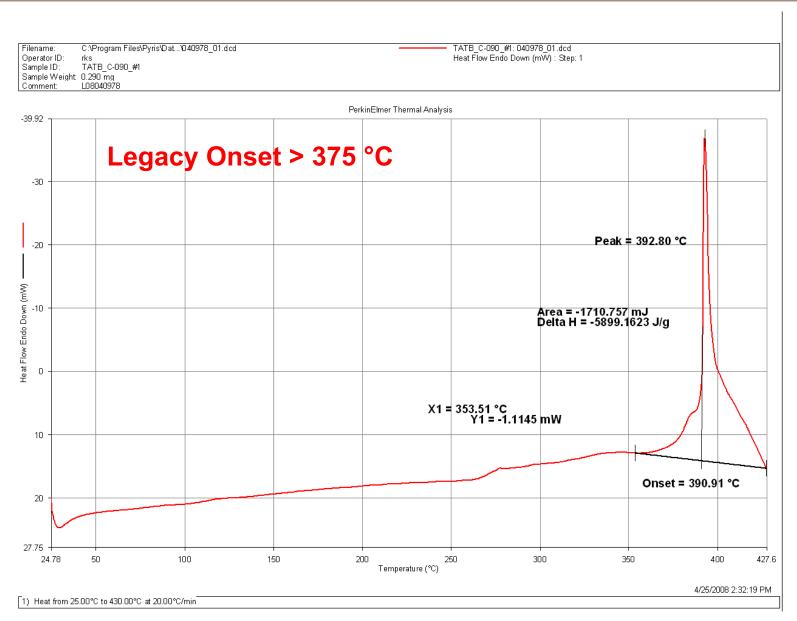
Altering the ATK Navy ManTech TATB Process


- Considered options to realize utilizable TATB by minimally altering ATK ManTech process
- TATB is difficult to modify post-process due to insolubility in solvents
- As a result, ATK LS used IR&D funding to explore numerous significant process changes to final ammonolysis step
- > 50 lab-scale synthetic experiments were run to date and > 200 supporting analyses have been made on the resulting materials
- ATK LS has seen many promising results as a result of this IR&D effort

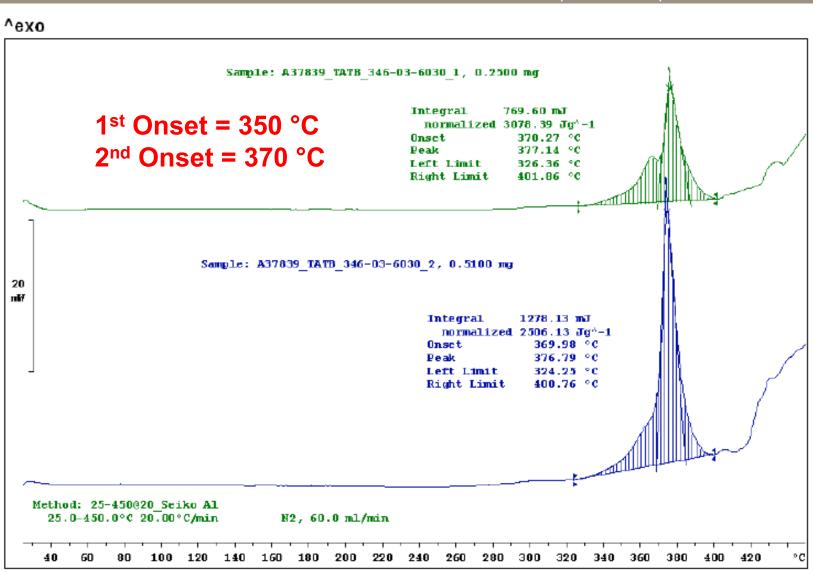
SEM of TATB from Newly Developed Method


A premier aerospace and defense company

New ATK TATB "looks" more like legacy material by SEM


SEM of New ATK TATB & Legacy TATB

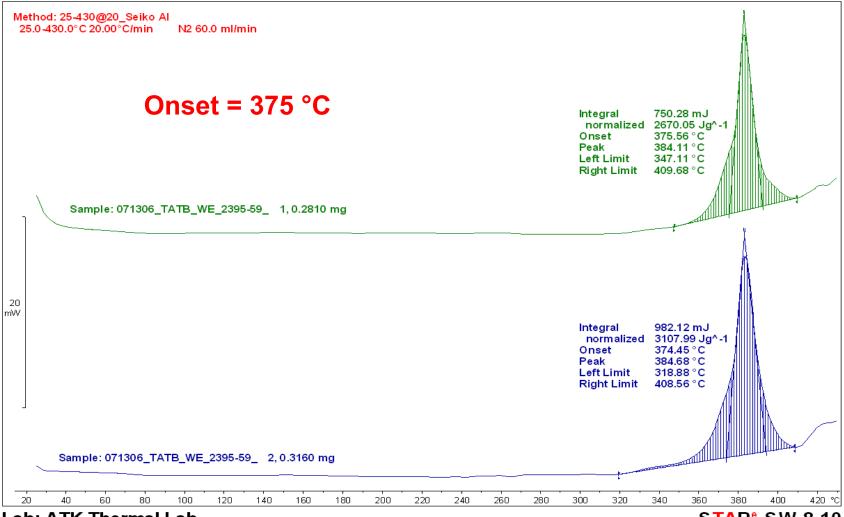
Legacy TATB DSC Data



ATK ManTech Process TATB: DSC Data

A premier aerospace and defense company

Lab: Thiokol Thermal Lab


METTLER TOLEDO STAR[®] System

New ATK Process TATB: DSC Data

A premier aerospace and defense company

Lab: ATK Thermal Lab

STAR® SW 8.10

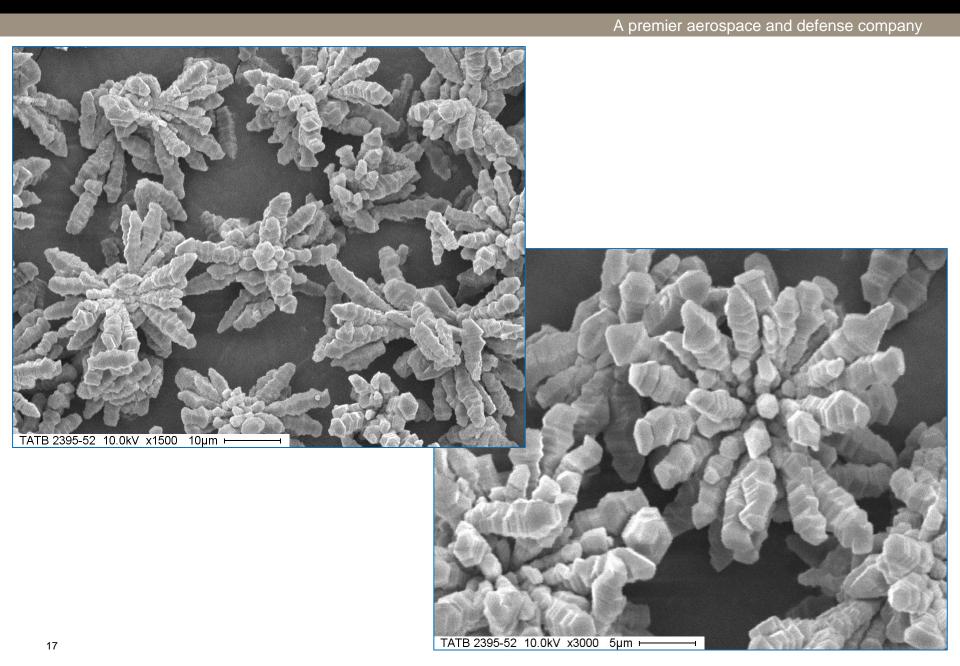
Properties of the Newly Developed ATK TATB

	% TATB (HPLC)	ADAP	EDATB	50%Size (μm)	1 st DSC Onset (°C)	Density (gas pyc)	C,H,N (27.92, 2.34, 32.55)
New ATK 1	99.5%	0.2%	0.3%	22.53	369.8		28.20, 1.89, 32.07
New ATK 2	99.3%	0.3%	0.4%	25.75	374.5	1.90-1.91	28.21, 1.92, 32.00
New ATK 3	99.5%	0.5%	0.0%	n/a	378.0		28.14, 2.02, 32.04
New ATK 4	99.7%	0.3%	0.0%	n/a	380		28.11, 1.95, 32.03
Mantech ATK	97.6%	1.8%	0.6%	54.3	368.9	1.83-1.84	29.02, 2.04, 31.44
Legacy C-090	100%	0%	0%	70.4	> 378	1.91-1.92	27.92, 2.34, 32.55

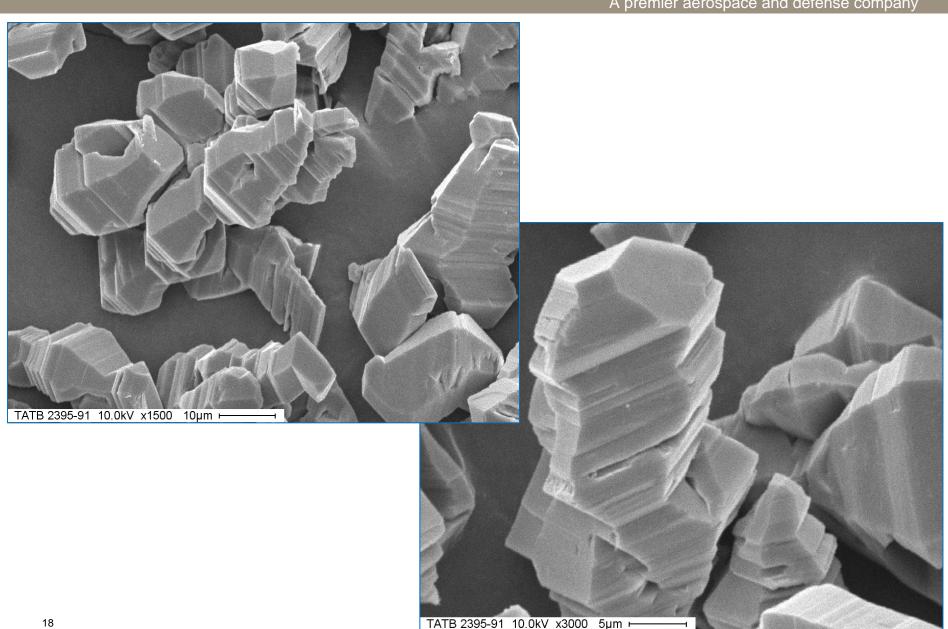
- DSC onset temperature may improve/become more consistent with refinements to process conditions
- Bulk density is much improved; comparable to legacy material

Conclusions

- New processing conditions for the conversion of TETNB to TATB have been developed
- New conditions yield product that is much more comparable to legacy materials than previous ATK process
- Purity/decomposition temperature improved over ManTech ATK process; not quite as good as legacy but process improvements continue
- Density of new product is much improved; comparable to legacy material
- New ATK TATB appears much more crystalline, "looks like" legacy material by SEM
- 25 gram sample has been sent to China Lake for further evaluation
- 25 gram samples have been prepared for shipment to LANL and LLNL
- ATK's goal is to establish a viable process for making TATB that can be used by all potential users/consumers (DOD and DOE)


Acknowledgements

- Navy ManTech office
- Chuck Painter
- Tim Mahoney
- Lori Nock
- Becky Olinger
- Others


SEM from Other Explored TATB Conditions

SEM from Other Explored TATB Conditions

