

Modeling and Testing of Ceramic Armor Tile Survivability to Fragment Attack

1

Presented by: Moran Shpitzer

Supervisors : Prof. Daniel Rittel

Dr. Tamar Yarom

- Research objectives
- Experimental setup and results
- Simulation modeling
- Discussion
- Summary & Conclusions

Department of Mechanical Engineering

Research Objectives

- Modeling a ceramic (Al₂o₃) armor as an IM shield against fragment attack.
- Comparing simulations data to the corresponding tests results.

Test Setup

Fragment formation

- Fragment is formed from the initiation of an EFP charge.
- An EFP charge is an explosive charge, consists of a metal casing and a 18.6 [gr] copper liner (acc. to STANAG 4496).
- After the initiation, the copper liner transforms into a hemispheric shaped fragment.
- Fragment's K.E≈30KJ
- 0.5" AP K.E≈16KJ

Department of Mechanical Engineering

Detailed Experimental setup

- A 450 [kv] Scandiflash X-Ray was used in order to examine the penetration process.
- 1st exp. flash time: 206 µs
- 2nd exp. flash time : 210 µs
- Parallax ratio = 0.83

Department of Mechanical Engineering

Experiments Results - cont.

210µs

Experiments Results

- Two Experiments were conducted.
- 1st experiment D.O.P. = **3.4** [mm]
- 2nd experiment D.O.P.= 3.7 [mm]

Simulation Methods

- Autodyn v6.1 2D Lagrange solver has been used.
- Grid size convergence graph was done in order to optimize grid size and results convergence with computing resources.
- Parametric simulations were conducted, in order to evaluate different parameters and compare different constitutive models.
- Finally, fine grid size simulations were conducted on the chosen set of parameters.

Department of Mechanical Engineering

Simulation Modeling- Materials

Part	Material	Equation of state	Strength Model	Failure Model	Source
Ceramic Tile	Alumina (98%)	Polynomial	Johnson Holmquist	Johnson Holmquist	Westerling and Lundberg (1995)
Fragment	Copper	Linear	Johnson Cook	Johnson Cook	Johnson and Cook (1985)
Backing	SS304	Shock	Steinberg Guinan	-	Steinberg (1991)

Department of Mechanical Engineering

Simulated fragment penetration-Half problem

Department of Mechanical Engineering

Alumina Modeling- J-H strength model

- Parameters that were investigated: Fractured Curve
 - B slope of fractured curve
 - σ^{f}_{MAX} dimensionless fractured strength upper limit|_{@D=1}

Department of Mechanical Engineering

Parametric Simulations results

Literature Survey

Source	Alumina	Code	В	σ^{f}_{max}
Westerling et al. (1995)	99.7%	AUTODYN 2D (Lagrange)	0.77	0.5
Anderson et al. (1995)	99.5%	EPIC (SPH)	0.28	1
Lynch et al. (2006)	97.5%	Grim 2D (Euler)	0.86	0.5
Present work	98%	AUTODYN 2D (Lagrange)	0.77 Or 2	0.6

Discussion

- Original J-H model (JH2) gives good estimation of the D.O.P experimental results.
- For an exact match, a modification of the fractured material parameters is presented (σ_{max}^{f} , B).
- The 'σ^f_{max}' Parameter has a strong influence on the D.O.P results. Nevertheless, 'B' parameter doesn't show a directional trend.

Summary & Conclusions

- Two firing experiments were conducted in order to acquire D.O.P results.
- Experimental D.O.P results were compared to the corresponding simulations results.
- Simulations were carried out using Autodyn v6.1 2D Lagrange solver.
- A set of parameters were chosen (JH2 model) in order to match the experimental results.

Future work...

- Further experiments on the same armor:
 - 1600 [m/s] fragment
 - 2500 [m/s] fragment
 - Bullet Impact
- Weight optimization (backing) for the armor is needed for commercial use.

The End