

The Performance of Insensitive Blast Enhanced Explosives

Werner Arnold, Ernst Rottenkolber (*)

TDW - Gesellschaft für verteidigungstechnische Wirksysteme mbH Schrobenhausen, Germany

2009 Insensitive Munitions and Energetic Materials Technology Symposium May 11 – 14, 2009 Loews Ventana Canyon Resort, Tucson, AZ, USA

© TDW GmbH. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

2009 INSENSITIVE MUNITIONS AND ENERGETIC MATERIALS TECHNOLOGY SYMPOSIUM

LOWER COST SOLUTIONS FOR PEST CENTURY INVEN REQUIREMENTS

- Motivation
- Yield of an Explosive
- Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 2 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Motivation

- Yield of an Explosive
- > Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 3 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

SIBEX: Shock Insensitive Blast Enhanced High EXplosives

IMEMTS 06, Bristol, UK: "What Influences the Shock Sensitivity of High Explosives ?"

IMEMTS 07, Miami, FL, USA: "SIBEX: Modelling and Testing"

Page 4 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Motivation

Yield of an Explosive

- Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 5 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

What characterizes the Yield of an Explosive

Conventional HE

6 msec

30 msec

60 msec

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

© TDW GmbH. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

30 msec

60 msec

"Heat of Detonation" (= Energy of Detonation): TNT

Page 7 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

"Heat of Combustion" (= Energy of Combustion): TNT

Process	Energy [kJ/g]		
Isochoric Combustion	0.0		
Isentropic Expansion	6.4		
	6.4	6.4	Mechanical Energy of Combustion
Isobaric Cooling		8.1	Thermal Energy of Combustion
		14.5	Total Energy of Combustion

IMEMTS 09 Tucson, AZ May 11-14, 2009

MBDA MISSILE SUSTEMS

© TDW GmbH. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

SIBEX Performance

Page 8 W. Arnold

Heat of Combustion vs Mechanical Energy (Useful Work)

Fuel	Net Heat of Combustion (calculated) [kJ/g]	Volume of Air [m³/kg]	Mechanical Energy of Combustion [kJ/g]	O₂-Balance [Mass-%]
В	58.7	35	23.2	-222
Fuel-Oil	46.9	15	21.2	-333
НТРВ	42.0	15	19.0	-319
DOA	33.9	13	15.3	-263
С	32.8	12	14.5	-266
Si	32.3	16	13.3	-114
AI	31.0	15	12.9	-88.9
РММА	27.6	9	12.5	-191.8
Mg	24.7	13	10.1	-65.8
IPN	17.2	5	7.98	-99.0
TNT	14.6	4	6.72	-74.0

For Example: TNT-Equivalent of Aluminum

• Mechanical Energy of Combustion TNT = 6.72 kJ/g vs AI = 12.9 kJ/g: TNT-Equ ~ 2

Page 9 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

TNT: Energy of Combustion vs Loading Density

Page 10 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Simulations for a variety of HEs PETN highly metallized Formulations

Page 11 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Shock Reverberations within Detonation Chamber

• Energy & Mass Losses due to Heat Transfer & Openings

QSP_{exp}(t) - t = 50, 100 ms & QSP_{max}

Page 12 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

- Motivation
- Yield of an Explosive

Test Setup

- Fest Results
- Numerical Simulations
- Conclusions

Page 13 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

ICT Test Chamber (Constant Volume)

- ICT Fraunhofer Institute, Karlsruhe, GE
 Closed detonation chamber, 45 m³, regular octagon
- SIBEX: 2 kg cylindrical shape, Dia 104 mm
- 1.50 m above ground in center of chamber
- Initiation from top
- Several pressure gauges

Page 14 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Test Charges: Composite & SDF Charges

Designation	Components	Туре	Oxygen Balance [%]
KS22a	RDX/AI/HTPB	composite	-77
PBX-4	RDX/B/HTPB	composite	-146
BM-I	HMX/HTPB + B/DOA	SDF	-148
TB1 D	HMX/HTPB + AI/B/DOA	SDF	-116

Single body composite charge

SDF-charge (Shock Dispersed Fuel)

Page 15 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

- Motivation
- Yield of an Explosive
- Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 16 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Test Results: Single Body Composite Charges

KS22a (Reference) RDX/AI/HTPB

PBX-4 RDX/B/HTPB

Page 17 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Test Results: Shock Dispersed Fuel (SDF) Charges

BM-I HMX/HTPB + B/DOA TB1 D HMX/HTPB + AI/B/DOA

Page 18 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Page 19 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

- Motivation
- Yield of an Explosive
- > Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 20 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Turbulent Mixing Controlled Combustion

- Kuhl et al. (LLNL): 34th ICT Conference 2002
- Application: TNT & PETN (conv. CHNO-explosive)

W. Arnold, E. Rottenkolber

Combustion of an Aluminized Explosive in a Detonation Chamber

39th International Annual Conference of ICT June 24 – June 27, Karlsruhe, 2008

Application: KS22a (AI-powder containing explosive)

Modifications & extensions:

Page 21 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Numerical Simulation: Video Clip

Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

Comparison: Material Location & Temperature KS22a vs PBX-4

t = 20 ms

Page 23 W. Arnold

KS22a -77% O₂ Deficit

PBX-4 -146% O₂ Deficit

IMEMTS 09 Tucson, AZ May 11-14, 2009

© TDW GmbH. The reproduction, distribution and utilization of this document as well as the communication of its contents to others without explicit authorisation is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility model or design.

SIBEX Performance

Aerobic Burn Fraction: KS22a vs PBX-4

Page 24 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

- Motivation
- Yield of an Explosive
- > Test Setup
- Test Results
- Numerical Simulations
- Conclusions

Page 25 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

> Good correlation between mechanical energy and quasi-static pressure.

- Combustion of composite charges with an extremely high oxygen deficit is slowed down by the difficulty to mix the detonation products with air.
- Shock dispersed fuel (SDF) charges with an equally high oxygen deficit have a higher overall burn rate compared to composite charges.
- > The best charges achieved TNT-equivalents between 1.5 and 1.7

Future enhancements:

- faster reacting metal particles
- means to accelerate mixing of fuel with air

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

Thank You for Your Attention !

Any Questions ?

Your Contact: Dr. Werner Arnold Phone: +49 8252 99 6267 Email: werner.arnold@mbda-systems.de

Page 27 W. Arnold

SIBEX Performance

IMEMTS 09 Tucson, AZ May 11-14, 2009

