

Modelling of Warhead Response to Projectile Impact with TEMPER Software

E. Lapébie (DGA/CEG) P-F Péron (NATO/MSIAC) F. Grannec (MSIAC Trainee)

Modelling of Warhead Response to Projectile Impact with TEMPER Software

TEMPER Software

New Modelling Improvements: - Covered Explosive - NATO Fragment

Application Example

BACKGROUND

- Toolbox of Engineering Models to Predict Explosive De Reactions
- Designed to aid in the prediction of the response of munitions to mechanical or thermal threats

FEATURES : Objects and models

New Modelling Work

- **Conical-ended projectile**
- Main goal:

New projectile

 \bigcirc

0

Modelling the NATO fragment defined in STANAG 4496 for IM evaluations (\$\$ 14.3 mm and 160° cone angle)

MODELS

STIMULI

V²d and u²d (Held) E_{crit} Walker-Wasley E_{crit} James Y (Yactor) [modified] V_{threshold} (Jacobs-Roslund) E_{seuil} and BSDT (Peugeot)

- 8 models available to model shock response
- Only one relevant for covered explosive: Jacobs-Roslund (JR)
- JR use limited by a lack of sets of parameters
- Work carried out to correlate JR parameters with explosive shock sensitivity (gap test)
- Main goal:
 - Modelling of warheads with very limited restrictions on explosive compositions

Copyright © 2009 MSIAC – All Rights Reserved

Jacobs-Roslund Model

Empirical model

 Critical impact velocity for target detonation related to explosive sensitivity, fragment size and shape and cover thickness:

$$V_{\text{threshold}}(t,d) = \frac{A}{d^{0.5}}(1+B)(1+C\frac{t}{d})$$

d = fragment diameter A = explosive sensitivity coefficient B = projectile shape coefficient 0 for flat-ended close to 1 for round-ended C = cover plate protection coefficient t = warhead cover thickness

Jacobs-Roslund Model

 Jacobs-Roslund parameters for various explosives have been compared to explosive shock sensitivity determined from large scale gap test (LSGT).

Excellent correlation

RÉPUBLIQUE FRANÇAISI

Jacobs-Roslund Model

Approach validated for various explosives whose LSGT shock sensitivity was known but not JR parameters

 Bare threshold slightly under- or over-estimated (± 5 to 9%)
Curve slope well-fitted in cover thickness range [0;6 mm] Copyright © 2009 MSIAC - All Rights Reserved

Extension of Jacobs-Roslund Model to Conical-Ended Fragment

Major interest to model the NATO fragment

- Modelling based on experiments carried out by Dr Haskins with various cone angles
- Approach detailed in the paper

Extension of Jacobs-Roslund Model to Conical-Ended Fragment

• Validation with two cone angles 165° and 150°

Copyright © 2009 MSIAC – All Rights Reserved

Extension of Jacobs-Roslund Model to Conical-Ended Fragment

Copyright © 2009 MSIAC – All Rights Reserved

- Work presented at IMEMTS conference in 2007 about DG an IM improvement program for HYDRA-70 Rocket warheads
- Four explosive candidates down selected and tested against NATO fragment in a warhead mock-up
- Warhead mock-up with a steel case
 - ϕ 76 mm and 5.1 mm thick

Explosive	Composition	NOL-LSGT Gap Test Threshold (GPa)
PBXIH-137	82% RDX - 18% Binder	4
PAX-21	34% DNAN - 30% AP - 36% RDX	3.62
PBXN-110	88% HMX - 12% HTPB	3.67
PBXN-109 (Non RS-RDX)	64% RDX - 20% Aluminium - 16% HTPB	2.2

• Tests carried out at three impact velocities:

2050, 2250 and 2500 m/s

RÉPUBLIQUE FRANÇAISE

 Calculated threshold velocities slightly below experimental results but very good estimation as it is only based on LSGT shock sensitivity

 Benefit of PBXN-109 with reduced sensitivity RDX other conventional RDX Copyright © 2009 MSIAC – All Rights Reserved

Main window Parameters window

Results window

Conclusions

New features available in next TEMPER version

 Reasonable agreement obtained with existing experimental results
Validation going on

 A training session will be organized on Thursday afternoon and you can join

Emmanuel Lapébie DGA/DET/CEG emmanuel.lapebie@dga.defense.gouv.fr

Pierre-François Péron NATO/MSIAC p-f.peron@dga.defense.gouv.fr